Membranes, Vol. 16, Pages 49: A QCM-D Study of the Interaction of Early Endosomal Antigen 1 (EEA1) Protein with Supported Lipid Bilayers Mimicking the Early Endosomal Lipid Composition
Membranes doi: 10.3390/membranes16020049
Authors:
Fotini Papagavriil
Pablo Mateos-Gil
Janelle Lauer
Marino Zerial
Electra Gizeli
The combination of supported lipid bilayers (SLBs) with the Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) has been proven to be a powerful tool to simultaneously monitor mass and viscoelastic changes related to membrane binding-events. In this work, the above methodology is employed for the study of the interaction of the Early Endosomal Antigen 1 (EEA1) to a model lipid bilayer that mimics the early endosome (EE) membrane, focusing on the membrane composition. Starting with the formation of a lipid bilayer through the vesicles fusion technique, we investigated the formation of SLBs that incorporate phosphatidylinositol 3-phosphate (PI(3)P), a key component for EEA1 binding, in combination with other lipids, e.g., (1,2-dioleoyl-sn-glycero-3)-phosphocholine (DOPC), -phosphoserine (DOPS), -phosphoethanolamine (DOPE), and cholesterol (Chol). The interaction of the full-length coiled-coil EEA1 to the formed SLBs was further studied in real time with the QCM-D and characterized with respect to the lipid composition and pH. Our findings confirm that PI(3)P is essential for the EEA1–membrane interaction, while it was shown that Chol and phosphatidylserine greatly influence the binding event. In fact, including 30% Chol in a PI(3)P (3%):PS (6%) SLB resulted in almost double EEA1 binding than in the absence of Chol. Moreover, we employed the QCM-viscoelastic model available to analyze the QCM-D data with emphasis on the study of the protein conformation. Our results showed that, in our in vitro system, EEA1 is not fully extended and/or highly packed, but is mainly in a bent, distorted conformation with an average size close to 100 nm. This study complements previous works employing in vitro assays, also demonstrating the ability to reconstitute more complex biomimetic EE membranes containing inositol phospholipids on a QCM surface for the study of EEA1 binding.
Source link
Fotini Papagavriil www.mdpi.com

