Metabolites, Vol. 16, Pages 22: Harnessing the Potential of a Secondary Metabolite-Based Formulation for the Post-Harvest Disease Management and Shelf Life Extension of Banana


Metabolites, Vol. 16, Pages 22: Harnessing the Potential of a Secondary Metabolite-Based Formulation for the Post-Harvest Disease Management and Shelf Life Extension of Banana

Metabolites doi: 10.3390/metabo16010022

Authors:
Karma Beer
T. Damodaran
M. Muthukumar
Prasenjit Debnath
Akath Singh
Maneesh Mishra

Background: Post-harvest losses in bananas, particularly due to diseases such as anthracnose and stem-end rot, significantly limit their storage life and marketability. Developing effective and non-toxic treatments to prolong the shelf life of fruits while maintaining quality is crucial inenabling long-distance transport and facilitating exports. Methods: The most popular and commercial banana variety, ‘Grand Naine’, was treated with a proprietary secondary metabolite-based formulation (this refers to a solution containing natural compounds produced by living organisms, which are not directly involved in growth but can influence various biological processes, such as antimicrobial activity) and stored under cold conditions at 13 °C, using vacuum packaging (a method where air is removed from the packaging to reduce spoilage and prolong freshness). Untreated fruits were considered as controls, meaning that they were not subjected to the treatment and served as a baseline for comparison. Shelf life-related parameters such as ethylene production (a plant hormone responsible for triggering fruit ripening), ACC oxidase activity (an enzyme central to ethylene synthesis), respiration rate (the rate at which fruit consumes oxygen and produces carbon dioxide), firmness, total soluble solids (TSS; measures the sugar content in fruit), acidity, and metabolic composition were assessed, including indices of susceptibility to disease. These measurements were taken at regular intervals for both treated and control fruits. Results: Secondary metabolite-treated bananas maintained quality for 45 days, staying free from anthracnose and stem-end rot. Control fruits showed over-ripening and an 11.6% percent disease index (PDI). Treated fruits had lower ethylene production (7.80 μg/kg/s vs. 10.03 μg/kg/s in controls), reduced ACC oxidase activity, and a slower respiration rate, delaying ripening. They also had greater firmness (1.45 kg/cm2), optimal TSS (13.5 °Brix), balanced acidity (0.58%), and increased flavonoid and antioxidant levels compared to controls. Conclusions: Secondary metabolite-based treatment, combined with cold storage and vacuum packaging, extended banana shelf life to 45 days, minimized disease, and preserved fruit quality. This approach substantially reduced post-harvest losses, demonstrating export potential through extended storage.



Source link

Karma Beer www.mdpi.com