Metals, Vol. 15, Pages 1111: The Role and Modeling of Ultrafast Heating in Isothermal Austenite Formation Kinetics in Quenching and Partitioning Steel
Metals doi: 10.3390/met15101111
Authors:
Jiang Chang
Mai Wang
Xiaoyu Yang
Yonggang Yang
Yanxin Wu
Zhenli Mi
A modified Johnson–Mehl–Avrami–Kolmogorov (JMAK) model, including the heating rates, was proposed in this study to improve the accuracy of isothermal austenite formation kinetics prediction. Since the ultrafast heating process affects the behavior of ferrite recrystallization and austenite formation before the isothermal process, which in turn influences the subsequent isothermal austenite formation kinetics, the effects of varying austenitization temperatures and heating rates on isothermal austenite formation in cold-rolled quenching and partitioning (Q&P) steel, which remain insufficiently understood, were systematically investigated. Under a constant heating rate, the austenite formation rate initially increases and subsequently decreases as the austenitization temperature rises from formation start temperature Ac1 to finish temperature Ac3, and complete austenitization is achieved more quickly at elevated temperatures. At a given austenitization temperature, an increased heating rate was found to accelerate the isothermal transformation kinetics and significantly reduce the duration required to achieve complete austenitization. The experimental results revealed that both the transformation activation energy (Q) and material constant (k0) decreased with increasing heating rates, while the Avrami exponent (n) showed a progressive increase, leading to the development of the heating-rate-dependent modified JMAK model. The model accurately characterizes the effect of varying heating rates on isothermal austenite formation kinetics, enabling kinetic curves prediction under multiple heating rates and austenitization temperatures and overcoming the limitation of single heating rate prediction in existing models, with significantly broadened applicability.
Source link
Jiang Chang www.mdpi.com