Metals, Vol. 15, Pages 665: Warpage Prediction in Wire Arc Additive Manufacturing: A Comparative Study of Isotropic and Johnson–Cook Plasticity Models


Metals, Vol. 15, Pages 665: Warpage Prediction in Wire Arc Additive Manufacturing: A Comparative Study of Isotropic and Johnson–Cook Plasticity Models

Metals doi: 10.3390/met15060665

Authors:
Saeed Behseresht
Young Ho Park

Wire Arc Additive Manufacturing (WAAM), a specific type of Directed Energy Deposition (DED) additive manufacturing, has recently gained widespread attention for manufacturing industrial components. WAAM has many advantages compared to other metal AM processes such as powder bed fusion. It is not only cost-efficient and easily accessible, but also capable of manufacturing large-scale industrial components in a short period of time. However, due to the inherent layered nature of the process and significant heat accumulation, parts can experience severe warping, often leading to part rejection. Predicting these anomalies prior to manufacturing would allow for process parameter adjustments to reduce or eliminate residual stresses and large deformations. In this study, we develop a simulation-based model capable of accurately predicting final deformations and unintended warpages. A Johnson–Cook plasticity model with isotropic hardening is implemented through a UMAT user subroutine in Abaqus. The proposed model is then utilized to predict the residual stresses and deformations in WAAM-fabricated parts. Simple wall geometries with 4, 8, and 20 layers deposited on build plates of varying thicknesses, are tested to assess the performance of the model. Combined Johnson–Cook plasticity and isotropic hardening for the WAAM process were implemented for the first time in this study, and the model was validated against experimental data, showing a maximum deviation of 4%. Thermal analysis of a four-layer-high wall took 12 min, while structural analysis using the proposed model took 1 h and 40 min. In comparison, thermo-mechanical analysis of the same geometry reported in the literature takes 14 h. The results demonstrate that the proposed model is not only highly accurate in predicting warpage but also significantly faster than other methodologies reported in the literature.



Source link

Saeed Behseresht www.mdpi.com