Metals, Vol. 16, Pages 142: Parallel Hybrid Modeling of Al–Mg–Si Tensile Properties Using Density-Based Weighting
Metals doi: 10.3390/met16020142
Authors:
Christian Dalheim Øien
Ole Runar Myhr
Geir Ringen
A hybrid modeling framework for predicting the mechanical properties of Al-Mg-Si alloys, that blends physics-based and machine-learning models, is developed and tested. Motivated by a demand for post-consumer material (PCM) content in wrought aluminium applications, this work proposes, analyses, and discusses a parallel framework that applies an adaptive weighting coefficient derived from local observation density. Based on existing datasets from a range of Al-Mg-Si alloys, such a model is trained and tested in an iterative manner to study its robustness, by emulating a shift in observed alloy composition. The results indicate that the hybrid model is able to combine the interpolative strength of machine learning for cases similar to previous observations with the explorative strength of physics-based (Kampmann–Wagner Numerical) modeling for previously unobserved parameter combinations, as the hybrid model shows higher or similar accuracy than the best of its constituents across the majority of the sequence. The observed model characteristics are promising for predicting the effect of increased compositional variation inherent in PCM. Finally, possible future research is discussed.
Source link
Christian Dalheim Øien www.mdpi.com
