Microorganisms, Vol. 14, Pages 160: Accelerated Genomic Evolution and Divergence of Escherichia coli Under Phage Infection Stress: Emphasizing the Role of IS Elements in Changing Genetic Structure
Microorganisms doi: 10.3390/microorganisms14010160
Authors:
Shuyang Wen
Lihong Yuan
Yingying Li
Jiayue Yin
Peng Luo
The phage-resistant mutant (PRM) strains of Escherichia coli (E. coli) exhibited abundant genetic and phenotypic diversity. IS elements played a vital role in creating various genetic divergences and regulating gene functions under phage infection stress. Genetic variations of PRM strains derived from E. coli MG1655 and mutation frequencies of coevolved E. coli populations with phages were explored by high-throughput sequencing and resequencing. Infrequent-restriction-site PCR (IRS-PCR) and carbon utilization test revealed the genetic and phenotypic diversity of the PRM strains. Numerous and discrepant mutation sites (MSs) were observed in the PRM strains and the coevolved populations, and many MSs were related to the synthesis of flagella and LPS, which often serve as receptors in a phage invasion. The insertions of various IS elements in key gene locations were also frequently found in the PRM strains, which indicate for the first time that IS elements played a vital role in generating genetic divergence and regulating gene functions under phage infection stress. Resequencing revealed that the coevolved populations at three evolving stages had discrepant profiles of MSs, and nearly all detected MSs occurred in the coevolved populations, which led to coexisting phages that increased the mutation rates and expedited the occurrence of the defective MSs in E. coli populations. In summary, our results reveal that the widespread and abundant presence of phages may provide one important force driving bacterial genomic evolution and prompt bacterial genetic divergence via accelerated mutation and increased mutation rates in the E. coli genome.
Source link
Shuyang Wen www.mdpi.com
