Minerals, Vol. 15, Pages 1069: Mineralogy and Critical Metal Distribution in Upper Carboniferous Aluminum-Bearing Strata from the Yangquan Mining Area, Northeastern Qinshui Basin: Insights from TIMA


Minerals, Vol. 15, Pages 1069: Mineralogy and Critical Metal Distribution in Upper Carboniferous Aluminum-Bearing Strata from the Yangquan Mining Area, Northeastern Qinshui Basin: Insights from TIMA

Minerals doi: 10.3390/min15101069

Authors:
Ning Wang
Yingxia Xu
Jun Zhao
Shangqing Zhang
Zhiyi Liu
Menghuai Hou

Critical metals associated with aluminum-bearing strata have garnered increasing attention due to their considerable economic potential. Recent investigations have identified notable enrichment of Li, Ga, Zr, Nb, REEs (rare earth elements), etc., within the Upper Carboniferous Benxi Formation in the Yangquan mining area, the Northeastern Qinshui Basin, Northern China. However, their mineralogical characteristics and micro-scale modes of occurrence remain insufficiently constrained. In this study, we employed the TESCAN Integrated Mineral Analyzer (TIMA) in combination with X-ray diffraction (XRD) and clay-separation experiments to provide direct mineralogical evidence for the occurrence of Ti, Li, Ga, Zr, and REEs in claystone and aluminous claystone from the Benxi Formation, Yangquan mining area, Northeastern Qinshui Basin. Our results indicate that both lithologies are primarily composed of kaolinite and diaspore, with minor amounts of anatase and cookeite; illite is additionally present in the claystone. Titanium predominantly occurs as anatase in both lithologies, though a portion in aluminous claystone may be incorporated into kaolinite and other Ti-bearing minerals such as rutile and leucoxene. Lithium is primarily hosted by cookeite in both rock types. Mineral assemblage variations further suggest that kaolinite may have partially transformed into Li-rich chlorite (i.e., cookeite) during the transformation from aluminous claystone to claystone. Gallium is chiefly associated with diaspore and kaolinite, with a stronger correlation with diaspore in the aluminous claystone. Zircon is the sole carrier of Zr in both lithologies. Importantly, La and Ce show a consistent spatial association with O–Al–Si–Ti–P mixed aggregates in TIMA maps, particularly in aluminous claystone. Based on these spatial patterns, textural relationships, and comparisons with previous studies, phosphate minerals are inferred to be the dominant REE hosts, although minor contributions from other phases cannot be completely excluded. These findings highlight a previously underexplored mode of critical-metal enrichment in Northern Chinese bauxite-bearing strata and provide a mineralogical basis for future extraction and utilization.



Source link

Ning Wang www.mdpi.com