Minerals, Vol. 16, Pages 89: Geochemical Framework of Ataúro Island (Timor-Leste) in an Arc–Continent Collision Setting


Minerals, Vol. 16, Pages 89: Geochemical Framework of Ataúro Island (Timor-Leste) in an Arc–Continent Collision Setting

Minerals doi: 10.3390/min16010089

Authors:
Job Brites dos Santos
Marina Cabral Pinto
Victor A. S. Vicente
André Ram Soares
João A. M. S. Pratas

Ataúro Island, located in the inner Banda Arc, provides a natural laboratory to investigate the interplay between magmatic evolution, hydrothermal circulation, and near-surface weathering in an active arc–continent collision setting. This study presents the first systematic island-wide geochemical baseline for Ataúro Island, based on multi-element analyses of stream sediments integrated with updated geological, structural, and hydromorphological information. Compositional Data Analysis (CoDA–CLR–PCA), combined with anomaly mapping and spatial overlays, defines a coherent three-tier geochemical framework comprising: (i) a lithogenic component dominated by Fe–Ti–Mg–Ni–Co–Cr, reflecting the geochemical signature of basaltic to andesitic volcanic rocks; (ii) a hydrothermal component characterized by Ag–As–Sb–S–Au associations spatially linked to structurally controlled zones; and (iii) an oxidative–supergene component marked by Fe–V–Zn redistribution along drainage convergence areas. These domains are defined strictly on geochemical criteria and represent geochemical process domains rather than proven metallogenic provinces. Rare earth element (REE) systematics further constrain the geotectonic setting and indicate that the primary geochemical patterns are largely controlled by lithological and magmatic differentiation processes. Spatial integration of geochemical patterns with fault architecture highlights the importance of NW–SE and NE–SW structural corridors in focusing hydrothermal fluid circulation and associated metal dispersion. The identified Ag–As–Sb–Au associations are interpreted as epithermal-style hydrothermal geochemical enrichment and exploration-relevant geochemical footprints, rather than as evidence of confirmed or economic mineralization. Overall, Ataúro Island emerges as a compact natural analogue of post-arc geochemical system evolution in the eastern Banda Arc, where lithogenic background, hydrothermal fluid–rock interaction, and early supergene processes are superimposed. The integrated geochemical framework presented here provides a robust baseline for future targeted investigations aimed at distinguishing lithogenic from hydrothermal contributions and evaluating the potential significance of the identified geochemical enrichments.



Source link

Job Brites dos Santos www.mdpi.com