Molecules, Vol. 31, Pages 432: Biochar Innovations for Organic Pollutant Remediation in Contaminated Soils
Molecules doi: 10.3390/molecules31030432
Authors:
Pengfei Li
Ying Liu
Yangyang Sun
Congyu Zhang
Soil contamination by organic pollutants such as polycyclic aromatic hydrocarbons (PAHs), pesticides, pharmaceuticals, and petroleum hydrocarbons has emerged as a global environmental concern due to their persistence, bioaccumulation, and potential health risks. Biochar, a carbon-rich material derived from the pyrolysis of biomass, has attracted increasing attention as an environmentally friendly and cost-effective amendment for remediating contaminated soils. This review systematically summarizes recent advances in the application of biochar for the remediation of organic pollutants in soils to guide the development of more effective biochar-based strategies for sustainable soil remediation. The physicochemical properties of biochar influencing pollutant interactions are discussed, including surface area, pore structure, functional groups, and aromaticity. Mechanisms such as adsorption, sequestration, microbial interaction enhancement, and catalytic degradation are elucidated. Moreover, this review highlights the influence of feedstock types, pyrolysis conditions, biochar modification strategies, and environmental factors on biochar performance. The analysis reveals that biochar performance is strongly dependent on feedstock selection, pyrolysis conditions, and post-modification strategies, which jointly determine pollutant immobilization efficiency and long-term stability. Current challenges, such as long-term stability, pollutant desorption, and ecological impacts, are critically examined. Finally, future perspectives on the design of engineered biochar and its integration with other remediation technologies are proposed. Rationally engineered biochar, particularly when integrated with biological or physicochemical remediation technologies, demonstrates strong potential for efficient and sustainable soil remediation.
Source link
Pengfei Li www.mdpi.com
