Nanomaterials, Vol. 15, Pages 827: Diazepam Photocatalytic Degradation in Laboratory- vs. Pilot-Scale Systems: Differences in Degradation Products and Reaction Kinetics


Nanomaterials, Vol. 15, Pages 827: Diazepam Photocatalytic Degradation in Laboratory- vs. Pilot-Scale Systems: Differences in Degradation Products and Reaction Kinetics

Nanomaterials doi: 10.3390/nano15110827

Authors:
Kristina Tolić Čop
Mia Gotovuša
Dragana Mutavdžić Pavlović
Dario Dabić
Ivana Grčić

Industrial growth led to the expansion of existing environmental problems, where different kinds of pollutants can enter the environment by many known routes, particularly through wastewater. Among other contaminants, pharmaceuticals, such as diazepam, once released, pose a significant challenge related to their removal from complex environmental matrices due to their persistence and potential toxicity. For this reason, it is a great challenge to find suitable methods for the treatment of wastewater. The aim of this paper was to investigate the stability of diazepam, subjecting it to various degradation processes (hydrolysis and photolysis), focusing on photocatalysis, an advanced oxidation process commonly used for the purification of industrial wastewater. The photocatalytic system consisted of UV-A and simulated solar irradiation with titanium dioxide (TiO2) immobilized on a glass mesh as a photocatalyst, with an additional reaction performed in the presence of an oxidizing agent, i.e., hydrogen peroxide, to improve diazepam removal from water matrices. The kinetic rate of diazepam degradation was monitored with a high-performance liquid chromatograph coupled with a photodiode array detector (HPLC-PDA). The target compound was characterized as a hydrolytically and photolytically stable compound with t1/2 = 25 h. The presence of an immobilized TiO2 catalyst contributed significantly to the degradation of diazepam under the influence of UV-A and simulated solar radiation, with t1/2 in the range of 1.61–2.56 h. Five degradation products of diazepam were identified at the laboratory scale by MS analysis (m/z = 267, m/z = 273, m/z = 301, m/z = 271, and m/z = 303), while the toxicity assessment revealed that diazepam exhibited developmental toxicity and a low bioaccumulation factor. The pilot-scale process resulted in significant improvements in diazepam degradation with the fastest degradation kinetics (0.6888 h−1). These results obtained at the pilot scale highlight the potential for industrial-scale implementation, offering a promising and innovative solution for pharmaceutical removal from wastewater.



Source link

Kristina Tolić Čop www.mdpi.com