Nanomaterials, Vol. 16, Pages 181: Dual-Effect of S-Scheme Heterojunction and CQDs Strengthens the Charge Separation and Transfer in CQDs-g-C3N4/TiO2 Photocatalysts Toward Efficient Tetracycline Degradation
Nanomaterials doi: 10.3390/nano16030181
Authors:
Kunping Wang
Xiaojiang Su
Zhangxi Zhou
Liangqing Hu
Hao Li
Junyi Long
Ying Feng
Xiaobo Zhang
Jinghuai Zhang
Jing Feng
Photocatalytic degradation of tetracycline (TC) is considered a viable technology due to its stable molecular structure and resistance to absorption by biological organisms. As a promising photocatalyst, TiO2 suffers from a wide bandgap and rapid charge recombination rates. In this work, the S-scheme heterojunctions of g-C3N4/TiO2 (CNTOx, x = 10, 30, and 70) were synthesized via solvothermal, calcination, and impregnation methods. Furthermore, carbon quantum dots (CQDs) were incorporated into the CNTO30 samples, resulting in yCQDs-CNTO30 (y = 0.5, 1, and 3). The 1CQDs-CNTO30 demonstrat an impressive TC degradation efficiency of 76.7% in 60 min under visible light, which is higher than that of CNTO30 (59.8%). This enhanced efficiency is ascribed to the effective charge separation induced by the dual-effect of S-scheme heterojunction and the CQDs. The built-in electric field within the heterojunction drives the separation of electrons and holes. Meanwhile, the highly conductive CQDs accelerate the electron transport, thereby promoting the charge separation. Additionally, the CQDs improve the ability of absorption light. This research provides critical insights into the strategic development of efficient ternary photocatalytic S-scheme heterojunctions for environmental remediation.
Source link
Kunping Wang www.mdpi.com
