Network, Vol. 5, Pages 28: Towards Intelligent 5G Infrastructures: Performance Evaluation of a Novel SDN-Enabled VANET Framework


Network, Vol. 5, Pages 28: Towards Intelligent 5G Infrastructures: Performance Evaluation of a Novel SDN-Enabled VANET Framework

Network doi: 10.3390/network5030028

Authors:
Abiola Ifaloye
Haifa Takruri
Rabab Al-Zaidi

Critical Internet of Things (IoT) data in Fifth Generation Vehicular Ad Hoc Networks (5G VANETs) demands Ultra-Reliable Low-Latency Communication (URLLC) to support mission-critical vehicular applications such as autonomous driving and collision avoidance. Achieving the stringent Quality of Service (QoS) requirements for these applications remains a significant challenge. This paper proposes a novel framework integrating Software-Defined Networking (SDN) and Network Functions Virtualisation (NFV) as embedded functionalities in connected vehicles. A lightweight SDN Controller model, implemented via vehicle on-board computing resources, optimised QoS for communications between connected vehicles and the Next-Generation Node B (gNB), achieving a consistent packet delivery rate of 100%, compared to 81–96% for existing solutions leveraging SDN. Furthermore, a Software-Defined Wide-Area Network (SD-WAN) model deployed at the gNB enabled the efficient management of data, network, identity, and server access. Performance evaluations indicate that SDN and NFV are reliable and scalable technologies for virtualised and distributed 5G VANET infrastructures. Our SDN-based in-vehicle traffic classification model for dynamic resource allocation achieved 100% accuracy, outperforming existing Artificial Intelligence (AI)-based methods with 88–99% accuracy. In addition, a significant increase of 187% in flow rates over time highlights the framework’s decreasing latency, adaptability, and scalability in supporting URLLC class guarantees for critical vehicular services.



Source link

Abiola Ifaloye www.mdpi.com