Pharmaceuticals, Vol. 18, Pages 1255: Use of TLC and Computational Methods to Determine Lipophilicity Parameters of Selected Neuroleptics: Comparison of Experimental and Theoretical Studies
Pharmaceuticals doi: 10.3390/ph18091255
Authors:
Daria Klimoszek
Małgorzata Dołowy
Małgorzata Jeleń
Katarzyna Bober-Majnusz
Background: Compound lipophilicity is a fundamental physicochemical property for determining the pharmacokinetic and pharmacodynamic profiles of therapeutic substances. It is successfully used in the early stages of drug candidates’ design and development. Aim: Taking into account the importance of this parameter, we aimed to assess and compare the utility of a hybrid procedure based on calculation methods and an experimental one for rapid and simple estimation of the lipophilicity of selected neuroleptics such as fluphenazine, triflupromazine, trifluoperazine, flupentixol and zuclopenthixol and their potential new derivatives. Methods: Log P values of the studied compounds were predicted by means of different platforms and algorithms: AlogPs, ilogP, XlogP3, WlogP, MlogP, milogP, logPsilicos-it, logPconsensus, logPchemaxon and logPACD/Labs. The experimental determination of lipophilicity was carried out by reverse-phase thin-layer chromatography (RP-TLC) using three types of stationary phases—RP-2F254, RP-8F254 and RP-18F254—and mobile phases consisted of acetone, acetonitrile and 1,4-dioxane as organic modifiers. Results: Our results provide a confident proposal of optimal chromatographic conditions to experimentally determine the lipophilicity of neuroleptic drugs, including new derivatives. Conclusions: Additionally, for the first time, the paper shows the application of selected topological indices in determining lipophilicity factors and other ADMET parameters of neuroleptics and, in the future, the newly synthesized quinoline derivatives of the studied compounds.
Source link
Daria Klimoszek www.mdpi.com