Plants, Vol. 14, Pages 2695: Comprehensive Study of Habitat Substrate-Related Variability of Cotinus coggygria Scop. as a Valuable Source of Natural Bioactive Compounds


Plants, Vol. 14, Pages 2695: Comprehensive Study of Habitat Substrate-Related Variability of Cotinus coggygria Scop. as a Valuable Source of Natural Bioactive Compounds

Plants doi: 10.3390/plants14172695

Authors:
Milan Stanković
Nenad Zlatić
Marcello Locatelli
Miryam Perrucci
Tatjana Marković
Dragana Jakovljević

Cotinus coggygria is a widespread medicinal and aromatic species known for its ecological plasticity, pharmacological potential, and cultivation prospects. Despite its broad distribution across heterogeneous habitats, little is known about how local ecological and pedochemical factors influence its physiological traits and secondary metabolite production. This study addresses this knowledge gap by analyzing the eco-physiological and phytochemical variability of C. coggygria across six natural populations differing in substrate type and geochemical conditions. The research reveals significant inter-population variability in element accumulation, oxidative stress markers, morphometric traits, and the qualitative and quantitative composition of essential oils and phenolic compounds. Soil analyses demonstrated notable differences in element concentrations (e.g., Ca, Fe, Co, Zn) across localities, correlating with geochemical conditions. Morphological traits, such as leaf size and petiole length, varied significantly, with pronounced differences observed in plants from thermophilous and metalliferous habitats. Oxidative stress, indicated by malondialdehyde (MDA) levels, was highest in populations from thermophilous habitats. Phenolic compound analysis revealed locality-specific differences, with plants from thermophilous habitats exhibiting the highest concentrations of gallic acid, catechin, and rutin. Essential oil yield and composition also varied: leaves from metalliferous habitats had the highest monoterpene hydrocarbon content, while bark samples from thermophilous habitats showed elevated sesquiterpene levels. This comprehensive analysis underscores the interplay between habitat-specific conditions and the physiological and biochemical processes of C. coggygria. The findings provide valuable insights for optimizing substrate conditions and ecological management, with implications for the cultivation of the species to enhance the synthesis of bioactive compounds. These results support sustainable land use practices and the development of high-value plant-based products, offering significant implications for agriculture, pharmacology, and ecosystem restoration. Future studies should further explore the genetic and biochemical mechanisms underlying this species’ adaptability and resource optimization in heterogeneous environments.



Source link

Milan Stanković www.mdpi.com