Plants, Vol. 14, Pages 3728: Plant Functional Group Removal Shifts Soil Nematode Community and Decreases Soil Particulate Organic Carbon in an Alpine Meadow


Plants, Vol. 14, Pages 3728: Plant Functional Group Removal Shifts Soil Nematode Community and Decreases Soil Particulate Organic Carbon in an Alpine Meadow

Plants doi: 10.3390/plants14243728

Authors:
Ligai Huang
Luping Ye
Xianhui Zhou
Hui Guo
Juan Zuo
Peng Wang
Yong Zheng

Vegetation degradation in the alpine meadows is becoming increasingly severe under global change, with species loss frequently linked to changes in plant functional groups (PFGs). Changes in PFGs alter plant-derived carbon inputs, which significantly influence soil organic carbon (SOC) sequestration and soil communities. However, the impact of specific PFG removal on soil carbon fractions and nematode trophic groups remains underexplored. In this study, above-ground removal of PFGs was carried out for five consecutive years in the Qinghai–Tibet Plateau alpine meadow, with five treatments: (1) no removal of PFGs (CK); (2) keep non-legume forbs (remove graminoids and legumes, Forbs); (3) keep graminoids (remove legumes and non-legume forbs, Graminoids); (4) keep legumes (remove non-legume forbs and graminoids, Legumes); (5) remove all PFGs (All-plants-removed). Root properties, nematode community, and soil carbon fractions were measured. We found that the Graminoids treatment significantly increased root biomass, whereas the All-plants-removed treatment led to a significant decrease. Nematode abundance was highest under the Legumes treatment, primarily due to increased omnivores-predators. Meanwhile, the soil particulate organic carbon (POC) varied significantly between PFG types, being the highest in the Forbs and CK treatments. Correlation analysis revealed a significant positive relationship between SOC and bacterivore abundance, suggesting that higher SOC enhances bacterivore populations and subsequently influences carbon cycling. We conclude that PFG removal alters soil nematode community structure and POC, underscoring the role of PFGs in below-ground biodiversity and soil carbon sequestration.



Source link

Ligai Huang www.mdpi.com