Polymers, Vol. 17, Pages 1252: Interactions and Curing Dynamics Between UV-Triggered Epoxy Acrylate Binder, Curing Agents and Photoinitiators
Polymers doi: 10.3390/polym17091252
Authors:
Ji-min Choi
Sang Jang
Keon-Soo Jang
This study investigated the interaction between UV-triggered curing binders and photoinitiators, focusing on their thermal, mechanical, and morphological properties. Using epoxy acrylate as the matrix and three potential photoinitiators with varying phosphorus contents, UV curing systems were fabricated and analyzed. 2-hydroxy-2-methyl-1-phenyl-1-propanone (HMPP), 2,4,6-trimethyl benzoyl diphenyl phosphine oxide (TPO), and their mixture were utilized as photoinitiators. We observed that the curing process significantly reduced residual double bonds within the first 5 s of UV irradiation time. The glass transition temperature (Tg) increased with curing time due to enhanced network density. For instance, in the MyA–TPO formulation, Tg of the cured sample tended to increase to 67.3 °C for 3 s to 79.8 °C for 15 s. Mechanical analysis revealed that HMPP facilitated the formation of robust network structures. Notably, the MyA–HMPP formulation exhibited a tensile strength of 63 MPa and a Young’s modulus of 21 MPa, indicating excellent mechanical strength. SEM imaging confirmed these findings, illustrating distinct fracture morphologies that correlated with mechanical performance. These results provide insights into optimizing UV-curable materials for applications requiring high precision and durability. In particular, the combination of high Tg, superior tensile strength, and uniform fracture morphology indicates excellent thermal stability, mechanical integrity, and crack resistance—critical requirements in semiconductor packaging. These properties, along with rapid UV curing, support the suitability of the proposed systems for advanced applications such as system-in-package (SiP) and 3D integration.
Source link
Ji-min Choi www.mdpi.com