Polymers, Vol. 17, Pages 1936: Bending-Induced Progressive Damage of 3D-Printed Sandwich-Structured Composites by Non-Destructive Testing
Polymers doi: 10.3390/polym17141936
Authors:
Lianhua Ma
Heng Sun
Xu Dong
Zhenyue Liu
Biao Wang
With the extensive application of 3D-printed composites across multiple industries, the investigation into their structural reliability under complex loading conditions has become a critical research focus. This study comprehensively employs acoustic emission (AE) monitoring, digital image correlation (DIC) measurement, and micro-computed tomography (Micro-CT) visualization techniques to explore the progressive damage behavior of 3D-printed sandwich-structured composites reinforced with continuous carbon fiber sheets under three-point bending. Mechanical tests show that increasing the fiber content of face sheets from 10% to 20% enhances average bending strength by 56%, while low fiber content compromises stiffness and load-bearing capacity. AE analysis categorizes damage modes into matrix cracking (<50 kHz), debonding/delamination (50–150 kHz), and fiber breakage (>150 kHz) using k-means clustering algorithms. DIC measurement reveals significant structural deformation processes during damage progression. The AE-DIC-Micro-CT combination demonstrates an initial undamaged state, followed by damage initiation and propagation in the subsequent stages. This integrated approach provides an effective method for damage assessment, guiding the design and reliability improvement of 3D-printed composites.
Source link
Lianhua Ma www.mdpi.com