Polymers, Vol. 17, Pages 2410: Development of an SA/XLG Composite Hydrogel Film for Customized Facial Mask Applications


Polymers, Vol. 17, Pages 2410: Development of an SA/XLG Composite Hydrogel Film for Customized Facial Mask Applications

Polymers doi: 10.3390/polym17172410

Authors:
Su-Mei Huang
Xu-Ling Sun
Chia-Ching Li
Jiunn-Jer Hwang

This study aims to address the poor extensibility, brittleness, and limited hydration stability of pure sodium alginate (SA) hydrogels, which hinder their use in flexible, skin-adherent applications such as facial masks, by developing bio-based composites incorporating five representative functional additives: xanthan gum, guar gum, hydroxyethyl cellulose (HEC), poly(ethylene glycol)-240/hexamethylene diisocyanate copolymer bis-decyl tetradeceth-20 ether (GT-700), and Laponite® XLG. Composite hydrogels were prepared by blending 1.5 wt% SA with 0.3 wt% of each additive in aqueous humectant solution, followed by ionic crosslinking using 3% (w/w) CaCl2 solution. Physicochemical characterization included rotational viscometry, uniaxial tensile testing, ATR-FTIR spectroscopy, swelling ratio analysis, and pH measurement. Among them, the SA/XLG composite exhibited the most favorable performance, showing the highest viscosity, shear-thickening behavior, and markedly enhanced extensibility with an elongation at break of 14.8% (compared to 2.5% for neat SA). It also demonstrated a mean swelling ratio of 0.24 g/g and complete dissolution in water within one year. ATR-FTIR confirmed distinct non-covalent interactions between SA and XLG without covalent modification. The hydrogel also demonstrated excellent conformability to complex 3D surfaces, consistent hydration retention under centrifugal stress (+23.6% mass gain), and complete biodegradability in aqueous environments. Although its moderately alkaline pH (8.96) may require buffering for dermatological compatibility, its mechanical resilience and environmental responsiveness support its application as a sustainable, single-use skin-contact material. Notably, the SA/XLG composite hydrogel demonstrated compatibility with personalized fabrication strategies integrating 3D scanning and additive manufacturing, wherein facial topography is digitized and transformed into anatomically matched molds—highlighting its potential for customized cosmetic and biomedical applications.



Source link

Su-Mei Huang www.mdpi.com