Polymers, Vol. 17, Pages 2802: Electrospinning PLLA/PCL Blend Fibre-Based Materials and Their Biomedical Application: A Mini Review
Polymers doi: 10.3390/polym17202802
Authors:
Chen Meng
Fibres play a crucial role in diverse biomedical applications, ranging from tissue engineering to drug delivery. Electrospinning has emerged as a simple and versatile technique for producing ultrafine fibres at micro- to nanoscale dimensions. Synthetic biopolymers are effective cues to replace damaged tissue in the biomedical field, both in vitro and in vivo applications. Among them, poly (L-lactic acid) (PLLA) is a renewable, environmentally friendly biopolymer material. Polycaprolactone (PCL) is a synthetic polymer with good biocompatibility and biodegradation characteristics. However, both electrospun PLLA and PCL fibres have their limitations. To overcome these shortcomings, electrospinning PLLA/PCL blend fibres has been the subject of many studies. This review discusses the different parameters for the electrospinning of PLLA/PCL-based fibres for biomedical applications. Furthermore, we also discuss how electrospun PLLA/PCL-based scaffolds can be modified or combined with other biomaterials, such as natural polymers and bioceramics, and examine their in vitro and in vivo applications in various tissue repair strategies.
Source link
Chen Meng www.mdpi.com