Polymers, Vol. 17, Pages 2966: Experimental Study on the Performance of a Stable Foam System and Its Application Effect Combined with Natural Gas in Natural Foamy Oil Reservoirs
Polymers doi: 10.3390/polym17222966
Authors:
Jipeng Zhang
Yongbin Wu
Xingmin Li
Chao Wang
Pengcheng Liu
Reservoirs in the Orinoco Heavy Oil Belt, Venezuela, typically hold natural foamy oil. Gas liberation during depletion leads to a sharp increase in viscosity, adversely impacting development efficiency. Therefore, this paper proposes a natural gas (CH4)–chemical synergistic huff-and-puff method (CCHP). It utilizes the synergism between a stable foam plugging system and natural gas to supplement reservoir energy and promote the generation of secondary foamy oil. To evaluate the performance of 20 types of foam stabilizers (polymers and surfactants), elucidate the influence on production and properties of key parameters, and reveal the flow characteristics of produced fluids, 24 sets of foam performance evaluation tests were conducted using a high-temperature foam instrument. Moreover, 15 sets of core experiments with production fluid visualization were performed. The results demonstrate that, in terms of individual components, XTG and HPAM-20M demonstrated the best foam-stabilizing performance, achieving an initial foam volume of 280 mL and a foam half-life of 48 h. Conversely, the polymer–surfactant composite of XTG-CBM-DA elevated the initial foam volume to 330 mL while maintaining a comparable half-life, further enhancing the performance of foaming capacity for a stable foam system. For further application in the CCHP, oil production shows a positive correlation with both post-depletion pressure and chemical agent concentration; however, the foam gas–liquid ratio (GLR) exhibits an inflection point, with the optimal ratio found to be 1.2 m3/m3. During the huff-and-puff process, the density and viscosity of the produced oil decrease cycle by cycle, while resin and asphaltene content show a significant reduction. Furthermore, visualization results reveal that the foam becomes finer, more stable, and more uniformly distributed under precise parameter control, leading to enhanced foamy oil effects and improved plugging capacity. Moreover, the foam structure transitions from an oil-rich state to a homogeneous and stable configuration throughout the CCHP process. This study provides valuable insights for achieving stable and sustainable development in natural foamy oil reservoirs.
Source link
Jipeng Zhang www.mdpi.com



