Processes, Vol. 13, Pages 1229: Machine Learning and Industrial Data for Veneer Quality Optimization in Plywood Manufacturing
Processes doi: 10.3390/pr13041229
Authors:
Mario Ramos-Maldonado
Felipe Gutiérrez
Rodrigo Gallardo-Venegas
Cecilia Bustos-Avila
Eduardo Contreras
Leandro Lagos
The plywood industry is one of the most significant sub-sectors of the forestry industry and serves as a cornerstone of sustainable construction within a bioeconomy framework. Plywood is a panel composed of multiple layers of wood sheets bonded together. While automation and process monitoring have played a crucial role in improving efficiency, data-driven decision-making remains underutilized in the industrial sector. Many industrial processes continue to rely heavily on the expertise of operators rather than on data analytics. However, advancements in data storage capabilities and the availability of high-speed computing have paved the way for data-driven algorithms that can support real-time decision-making. Due to the biological nature of wood and the numerous variables involved, managing manufacturing operations is inherently complex. The multitude of process variables, and the presence of non-linear physical phenomena make it challenging to develop accurate and robust analytical predictive models. As a result, data-driven approaches—particularly Artificial Intelligence (AI)—have emerged as highly promising modeling techniques. Leveraging industrial data and exploring the application of AI algorithms, particularly Machine Learning (ML), to predict key performance indicators (KPIs) in process plants represent a novel and expansive field of study. The processing of industrial data and the evaluation of AI algorithms best suited for plywood manufacturing remain key areas of research. This study explores the application of supervised Machine Learning (ML) algorithms in monitoring key process variables to enhance quality control in veneers and plywood production. The analysis included Random Forest, XGBoost, K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Lasso, and Logistic Regression. An initial dataset comprising 49 variables related to the maceration, peeling, and drying processes was refined to 30 variables using correlation analysis and Lasso variable selection. The final dataset, encompassing 13,690 records, categorized into 9520 low-quality labels and 4170 high-quality labels. The evaluation of classification algorithms revealed significant performance differences; Random Forest reached the highest accuracy of 0.76, closely followed by XGBoost. K-Nearest Neighbors (KNN) demonstrated notable precision, while Support Vector Machine (SVM) exhibited high precision but low recall. Lasso and Logistic Regression showed comparatively lower performance metrics. These results highlight the importance of selecting algorithms tailored to the specific characteristics of the dataset to optimize model effectiveness. The study highlights the critical role of AI-driven insights in improving operational efficiency and product quality in veneer and plywood manufacturing, paving the way for enhanced industrial competitiveness.
Source link
Mario Ramos-Maldonado www.mdpi.com