Processes, Vol. 13, Pages 1765: Optimal Placement and Sizing of Distributed PV-Storage in Distribution Networks Using Cluster-Based Partitioning
Processes doi: 10.3390/pr13061765
Authors:
Xiao Liu
Pu Zhao
Hanbing Qu
Ning Liu
Ke Zhao
Chuanliang Xiao
Conventional approaches for distributed generation (DG) planning often fall short in addressing operational demands and regional control requirements within distribution networks. To overcome these limitations, this paper introduces a cluster-oriented DG planning method. In terms of cluster partitioning, this study breaks through the limitations of traditional methods that solely focus on electrical parameters or single functions. Innovatively, it partitions the distribution network by comprehensively considering multiple critical factors such as system grid structure, nodal load characteristics, electrical coupling strength, and power balance, thereby establishing a unique multi-level grid structure of **distribution network—cluster—node**. This partitioning approach not only effectively reduces inter-cluster reactive power transmission and enhances regional power self-balancing capabilities but also lays a solid foundation for the precise planning of subsequent distributed energy resources. It represents a functional expansion that existing cluster partitioning methods have not fully achieved. In the construction of the planning model, a two-layer coordinated siting and sizing planning model for distributed photovoltaics (DPV) and energy storage systems (ESS) is proposed based on cluster partitioning. In contrast to traditional models, this model for the first time considers the interaction between power source planning and system operation across different time scales. The upper layer aims to minimize the annual comprehensive cost by optimizing the capacity and power allocation of DPV and ESS in each cluster. The lower layer focuses on minimizing system network losses to precisely determine the PV connection capacity of each node within the cluster and the grid connection locations of ESS, achieving comprehensive optimization from macro to micro levels. For the solution algorithm, a two-layer iterative hybrid particle swarm algorithm (HPSO) embedded with power flow calculation is designed. Compared to traditional single particle swarm algorithms, HPSO integrates power flow calculations, allowing for a more accurate consideration of the actual operating conditions of the power grid and avoiding the issue in traditional methods where the current and voltage distribution are often neglected in the optimization process. Additionally, HPSO, through its two-layer iterative approach, is able to better balance global and local search, effectively improving the solution efficiency and accuracy. This algorithm integrates the advantages of the particle swarm optimization algorithm and the binary particle swarm optimization algorithm, achieving iterative solutions through efficient information exchange between the two layers of particle swarms. Compared with conventional particle swarm algorithms and other related algorithms, it represents a qualitative leap in computational efficiency and accuracy, enabling faster and more accurate handling of complex planning problems. Case studies on a real 10 kV distribution network validate the practicality of the proposed framework and the robustness of the solution technique.
Source link
Xiao Liu www.mdpi.com