Processes, Vol. 13, Pages 2062: Characteristics of Deep Coal Reservoirs Based on Logging Parameter Responses and Laboratory Data: A Case Study of the Logging Response Analysis of Reservoir Parameters Is Carried Out in Ordos Basin, China
Processes doi: 10.3390/pr13072062
Authors:
Xiaoming Yang
Jingbo Zeng
Die Liu
Yunhe Shi
Hongtao Gao
Lili Tian
Yufei He
Fengsheng Zhang
Jitong Su
The coal reservoir in the Ordos Mizhi block is buried at a depth of over 2000 m. This study aims to obtain the characteristics of the coal reservoir in the Mizhi block through various experimental methods and combine the gas-bearing characteristics obtained from on-site desorption experiments to analyze the gas content and logging response characteristics of the study area. On this basis, a reservoir parameter interpretation model for the study area is established. This provides a reference for the exploration and development of coal-rock gas in the Mizhi block. The research results show that: (1) The study area is characterized by the development of the No. 8 coal reservoirs of the Benxi Formation, with a thickness ranging from 2 to 11.6 m, averaging 7.2 m. The thicker coal reservoirs provide favorable conditions for the formation and storage of coal-rock gas. The lithotypes are mainly semi-bright and semi-dark. The coal maceral is dominated by the content of the vitrinite, followed by the inertinite, and the exinite is the least. The degree of metamorphism is high, making it a high-grade coal. In the proximate analysis, the moisture ranges from 0.36 to 1.09%, averaging 0.65%. The ash ranges from 2.34 to 42.17%, averaging 16.57%. The volatile ranges from 9.18 to 15.7%, averaging 11.50%. The fixed carbon ranges from 45.24 to 87.51%, averaging 71.28%. (2) According to the results of scanning electron microscopy (SEM), the coal samples in the Mizhi block have developed fractures and pores. Based on the results of the carbon dioxide adsorption experiment, the micropore adsorption capacity is 7.8728–20.3395 cm3/g, with an average of 15.2621 cm3/g. The pore volume is 0.02492–0.063 cm3/g, with an average of 0.04799 cm3/g. The specific surface area of micropores is 79.514–202.3744 m2/g, with an average of 153.5118 m2/g. The micropore parameters are of great significance for the occurrence of coal-rock gas. Based on the results of the desorption experiment, the gas content of the coal rock samples in the study area is 12.97–33.96 m3/t, with an average of 21.8229 m3/t, which is relatively high. (3) Through the correlation analysis of the logging parameters of the coal reservoir, the main logging response parameters of the reservoir are obtained. Based on the results of the logging sensitivity analysis of the coal reservoir, the interpretation model of the reservoir parameters is constructed and verified. Logging interpretation models for parameters such as industrial components, microscopic components, micropore pore parameters, and gas content are obtained. The interpretation models have interpretation effects on the reservoir parameters in the study area.
Source link
Xiaoming Yang www.mdpi.com