Processes, Vol. 13, Pages 3057: Research on Carbon Emission Accounting of Municipal Wastewater Treatment Plants Based on Carbon Footprint


Processes, Vol. 13, Pages 3057: Research on Carbon Emission Accounting of Municipal Wastewater Treatment Plants Based on Carbon Footprint

Processes doi: 10.3390/pr13103057

Authors:
Saijun Zhou
Yongyi Yu
Zhijie Zheng
Liang Zhou
Chuang Wang
Renjian Deng
Andrew Hursthouse
Mingjun Deng

In the context of global carbon neutrality, municipal wastewater treatment plants (WWTPs), as key sources of greenhouse gas emissions, urgently require quantification of carbon emissions and implementation of mitigation strategies. This study establishes a life-cycle carbon footprint model encompassing the stages of pretreatment, biological treatment (AAO process), and sludge treatment, with integrated consideration of municipal sewer networks. Key findings reveal the following: The biological treatment stage contributes 68.14% of total carbon emissions. N2O (nitrous oxide), due to its high global warming potential (GWP), is the primary source of direct emissions (0.333 kg CO2eq/m3). In the pretreatment stage, 80.4% of carbon emissions originate from the electricity consumption of sewage lifting pump stations (0.030 kg CO2eq/m3). During the sludge treatment stage, carbon emissions are concentrated in residual sludge lifting (0.0086 kg CO2eq/m3) and sludge dewatering/pressing (0.0088 kg CO2eq/m3). Accordingly, this study proposes the following mitigation strategies: novel nitrogen removal processes should be implemented to optimize aeration control and enhance methane (CH4) recovery during the biological period, and variable frequency drive (VFD) pumps and IoT (Internet of Things) technologies should be employed to reduce energy consumption during the pretreatment period, and during the sludge treatment period, low-carbon dewatering technologies should be adopted. This work provides a theoretical foundation for process-specific carbon management in WWTPs and facilitates the synergistic advancement of environmental stewardship and dual-carbon objectives through technology–system integration.



Source link

Saijun Zhou www.mdpi.com