Processes, Vol. 13, Pages 3151: Multiobjective Sustainability Optimisation of a Delayed Coking Unit Processing Heavy Mexican Crude Using Aspen Plus
Processes doi: 10.3390/pr13103151
Authors:
Judith Teresa Fuentes-García
Martín Rivera-Toledo
The delayed coking unit (DCU) is a critical technology in Mexican refineries for upgrading heavy crude oil into lighter, high-value products. Despite its economic relevance, the process is energy-intensive, generates substantial emissions, and produces significant coke, challenging its sustainability. This study proposes a multi-objective optimization framework to enhance DCU performance by integrating Aspen Plus® v.12.1 simulations with sustainability metrics. Five key indicators were considered: Global Warming Potential (GWP), Specific Energy Intensity (SEI), Mass Intensity (MI), Reaction Mass Efficiency (RME), and Product Yield. A validated Aspen Plus® model was combined with sensitivity analysis to identify critical decision variables, which were optimized through the ϵ-constraint method. Strategic adjustments in reflux flows, split ratios, and column operating conditions improved separation efficiency and reduced energy demand. Results show GWP reductions of 15–25% and SEI improvements of 5–18% for light and heavy gas oils, with smaller gains in MI and trade-offs in RME. Product yield was preserved under optimized conditions, ensuring economic feasibility. A key limitation is that this study did not model coking reactions; instead, optimization focused on the separation network, using reactor effluent as a fixed input. Despite this constraint, the methodology demonstrates a replicable path to improve refining sustainability.
Source link
Judith Teresa Fuentes-García www.mdpi.com