Processes, Vol. 13, Pages 3332: Research on the Mechanism and Process Technology of Pressure-Driven Pressure Reduction and Injection Increase in Low-Permeability Oil Reservoirs: A Case Study of the Sha II Section of Daluhu Block in Shengli Oilfield


Processes, Vol. 13, Pages 3332: Research on the Mechanism and Process Technology of Pressure-Driven Pressure Reduction and Injection Increase in Low-Permeability Oil Reservoirs: A Case Study of the Sha II Section of Daluhu Block in Shengli Oilfield

Processes doi: 10.3390/pr13103332

Authors:
Bin Chen
Rongjun Zhang
Jian Sun
Qunqun Zhou
Jiaxi Huang

In response to the problems encountered during the pressure-driven oil recovery process in low-permeability oil reservoirs, such as slow pressure transmission, poor liquid supply, vulnerability of the reservoir to damage, and difficulties in injection and production, in order to achieve the goal of high-quality water injection development, based on the theories of rock mechanics and seepage mechanics, combined with large-scale physical model experiments, acoustic emission crack monitoring, and microscopic scanning technology, an oil reservoir and fracture model was established to conduct a feasibility analysis of pressure-driven assisted pressure reduction and enhanced injection, and it was successfully applied in the exploration and development practice of the Shengli Oilfield. The research shows the following: (1) During the pressure-driven process, the distribution of the fracture network system is relatively limited. In the early stages of the process, there will be minor fractures, but they do not communicate or activate effectively. The improvement of physical properties and pore-throat structure is negligible. As the injection flow rate increases, the effective fracture network system begins to be established, and the range of fluid coverage begins to expand. With the progress of the pressure-driven process, the hydraulic fractures gradually extend, the number of activated original fractures gradually increases, the communication area between hydraulic fractures and original fractures gradually increases, and the reservoir modification effect gradually improves. (2) Based on the compression cracking experiment of large object molds, it is concluded that generating effective micro-cracks and activating them to form efficient diversion channels is the key to pressure flooding injection. Combining the mechanical characteristics of the rock in the target layer to precisely control the injection speed and injection pressure can maximize the fracture network, thereby improving the reservoir to achieve the purpose of pressure reduction and injection increase. (3) Different pressure flooding injection parameters were set for the low-permeability oil reservoirs in the study area to simulate the fracture network expansion. Finally, it was concluded that the optimal injection speed for fracture expansion was 1.2 m3/min and the optimal total injection volume was 20,000 m3. Through research, the mechanism of pressure-driven injection and the extent of reservoir modification caused by this pressure-driven process have been enhanced in terms of understanding.



Source link

Bin Chen www.mdpi.com