Processes, Vol. 13, Pages 3769: Distribution Model of Wellbore Collapse Pressure in Deviated Wells Considering Fracture Development and Engineering Applications
Processes doi: 10.3390/pr13123769
Authors:
Lu Li
Yang Zhao
Yafei Fu
Ping Yue
During drilling in fractured formations, wellbore instability issues such as fluid loss and collapse frequently occur, severely compromising drilling safety. Traditional criteria such as Mohr–Coulomb often fail to adequately account for fracture effects, leading to inaccurate collapse pressure predictions. Taking the Tahe Oilfield as a case study, this research develops an enhanced model for predicting wellbore collapse pressure in fractured formations. Based on principles of elastic mechanics and Biot’s effective stress theory, a stress distribution model around deviated wellbores is established. The single weak plane strength criterion is integrated with the Mohr–Coulomb criterion to characterize failure mechanisms in both fractured zones and intact rock matrix. Newton’s iterative method, implemented in MATLAB, is employed to solve for collapse pressure, and a sensitivity analysis is conducted to evaluate the influence of factors such as in situ stresses and fracture orientation. A case study from Well THX demonstrates that neglecting fractures results in a symmetrical collapse pressure profile and an unduly narrow safe mud weight window. In contrast, accounting for fractures significantly increases the required mud weight and identifies an optimal azimuth range for enhancing wellbore stability. The Mohr–Coulomb criterion is shown to underestimate the necessary mud weight, which aligns with actual wellbore collapse incidents encountered during drilling. The single weak plane criterion offers more accurate predictions, recommending a higher minimum mud density and an optimized well trajectory to mitigate drilling risks. These findings offer theoretical and practical guidance for mitigating wellbore instability in fractured formations.
Source link
Lu Li www.mdpi.com


