Processes, Vol. 14, Pages 417: Extremophile Red Algae for Acid Mine Waste Remediation: A Design-Forward Review Focused on Galdieria sulphuraria
Processes doi: 10.3390/pr14030417
Authors:
Shaseevarajan Sivanantharajah
Kirusha Sriram
Mathupreetha Sivanesarajah
Sinthuja Nadesananthan
Thinesh Selvaratnam
Acid mine drainage (AMD) and acid-generating mine wastes exhibit low pH, high sulfate levels, and complex multi-metal loads that strain conventional treatment. Thermoacidophilic red algae of the order Cyanidiales, particularly Galdieria sulphuraria (G. sulphuraria), have attracted interest as a biological option because they tolerate extreme acidity and elevated temperatures, grow under low light in mixotrophic or heterotrophic modes, and display rapid metal binding at the cell surface. This review synthesizes about two decades of peer-reviewed work to clarify how G. sulphuraria can be deployed as a practical module within mine water treatment trains. We examine the mechanisms of biosorption and bioaccumulation and show how they map onto two distinct configurations. Processed freeze-dried biomass functions as a regenerable sorbent for rare earth elements (REEs) and selected transition metals in packed beds with acid elution for recovery. Living cultures serve as polishing units for divalent metals and, when present, nutrients or dissolved organics under low light. We define realistic operating windows centered on pH 2–5 and temperatures of approximately 25–45 °C, and we identify matrix effects that govern success, including competition from ferric iron and aluminum, turbidity and fouling risks, ionic strength from sulfate, and suppression of REE uptake by phosphate in living systems. Building on laboratory studies, industrial leachate tests, and ecosystem observations, we propose placing G. sulphuraria upstream of bulk neutralization and outline reporting practices that enable cross-site comparison. The goal is an actionable framework that reduces reagent use and sludge generation while enabling metal capture and potential recovery of valuable metals from mine-influenced waters.
Source link
Shaseevarajan Sivanantharajah www.mdpi.com
