Reaction Behavior of Biochar Composite Briquette Under H2-N2 Atmosphere: Experimental Study


Author Contributions

Conceptualization, H.T.; methodology, H.T.; software, T.Z. and H.T.; validation, T.Z. and Y.L.; formal analysis, T.Z. and Y.L.; investigation, T.Z. and Y.L.; resources, T.Z. and Y.L.; data curation, T.Z. and Y.L.; writing—T.Z.; writing—review and editing, H.T.; visualization, T.Z. and Y.L.; supervision, H.T.; project administration, H.T.; funding acquisition, H.T. All authors have read and agreed to the published version of the manuscript.

Figure 1.
Image of the obtained biochar.

Figure 2.
Photos of the prepared BCB.

Metals 15 00236 g002

Figure 3.
Experimental device: (1, 2) mass flow controller, (3) mixing chamber, (4) mass-loss sensor, (5) furnace, (6) MoSi2 heating elements, (7) hot temperature zone, (8) sample holder, (9) reaction tube, (10) alumina ball, (11) thermocouple, (12) computer, (13) IR heater, (14) suspending wire, and (15) water sealing.

Metals 15 00236 g003

Figure 4.
Comparison between model-predicted and experimental mass-loss curves under different scenarios.

Metals 15 00236 g004

Figure 5.
Comparison between model-predicted and experimental final iron oxide reduction fractions and biochar gasification fractions under different scenarios.

Metals 15 00236 g005

Figure 6.
Influence of temperature on iron oxide reduction (a) and biochar gasification (b) in BCB reaction.

Metals 15 00236 g006

Figure 7.
Changes in gas generating rates of H2, H2O, CO, and CO2 with time under different temperatures.

Metals 15 00236 g007

Figure 8.
Influences of H2 content in the atmosphere on iron oxide reduction (a) and biochar gasification (b) in the BCB reaction.

Metals 15 00236 g008

Figure 9.
Changes of gas generation rates of H2, CO, CO2, and H2O with time under different atmospheres.

Metals 15 00236 g009

Figure 10.
Changes of radial distribution of local reduction fraction (a) and local gasification fraction (b) with time under scenario II.

Metals 15 00236 g010

Figure 11.
XRD patterns at different times under scenario II: (a) 0 min, (b) 10 min, (c) 20 min, and (d) 30 min.

Metals 15 00236 g011

Figure 12.
SEM images near the BCB center at different reaction times under scenario II: (a) 0 min, (b) 10 min, (c) 20 min, and (d) 30 min.

Metals 15 00236 g012

Table 1.
Properties of prepared biochar fines (wt.%).

Proximate Analysis (ar)Elemental Analysis (daf)
MAVFCCHONS
2.424.633.6089.3589.820.938.670.580.03

Table 2.
BCB phase composition (wt.%).

Fe3O4FeOFeCGangue
52.5724.540.9813.168.75

Table 3.
Experimental scenarios.

No.Temperature/KAtmosphere (H2:N2 (Vol.))
I117350:50
II127350:50
III137350:50
IV127325:75
V127375:25

Table 4.
Reactions involved in the model.

NoReactionReaction RateRefs.
(R1) 3 Fe 2 O 3 s + CO g = 2 Fe 3 O 4 s + CO 2 ( g ) r i = ( P CO P CO 2 / K i ) / ( R T ) ( K i / ( k i ( 1 + K i ) ) ( 1 f i ) 2 / 3 ) a gs
k 1 = exp ( 1.445 6038.0 / T )
K 1 = exp ( 7.255 + 3720 / T )
k 2 = exp ( 2.515 4811.0 / T )
K 2 = exp ( 5.289 4711.0 / T )
k 3 = exp ( 0.805 7385 / T )
K 3 = exp ( 2.946 + 2744.63 / T )
[19]
(R2) Fe 3 O 4 s + CO g = 3 FeO s + CO 2 ( g )
(R3) FeO s + CO g = Fe s + CO 2 ( g )
(R4) 3 Fe 2 O 3 s + H 2 g = 2 Fe 3 O 4 s + H 2 O ( g ) r i = ( P H 2 P H 2 O / K 2 ) / ( R T ) ( K i / ( k i ( 1 + K i ) ) ( 1 f i ) 2 / 3 ) a gs ( f 4 = f 1 , f 5 = f 2 , f 6 = f 3 )
k 4 = exp ( 2.490 4017 / T )
K 4 = exp ( 10.32 + 362 / T )
k 5 = exp ( 4.70 6999.7 / T )
K 5 = exp ( 8.98 8580 / T )
k 6 = exp ( 4.97 6867.4 / T )
K 6 = exp ( 1.30 + 2070 / T ) ;
[19]
(R5) Fe 3 O 4 s + H 2 g = 3 FeO s + H 2 O ( g )
(R6) FeO s + H 2 g = Fe s + H 2 O ( g )
(R7) C s + CO 2 g = 2   CO ( g ) r 7 = ρ C , 0 k 3 1 f 7 2 / 3 ( P CO 2 / 1.01 × 10 5 ) 0.38 / M C ,   k 7 = 3.1 × 10 6 exp ( 230000 / R T ) ,   f 7 = f C [20]
(R8) C s + H 2 O g = CO ( g ) + H 2 ( g ) r 8 = ρ C , 0 k 4 1 f 8 2 / 3 ( P H 2 O / 1.01 × 10 5 ) 0.55 / M C k 8 = 6750 exp ( 156000 / R T ) , f 8 = f C [20]

Table 5.
Terms in Equation (2).

p D S
p C O D C O N 2 R T r C O ,   r CO = r 8 + 2.0 r 7 r 1 r 2 r 3
p CO 2 D CO 2 N 2 R T r CO 2 , r CO 2 = r 1 + r 2 + r 3 r 7
p H 2 D H 2 N 2 R T r H 2 , r H 2 = r 8 r 4 r 5 r 6
p H 2 O D H 2 O N 2 R T r H 2 O ,   r H 2 O = r 4 + r 5 + r 6 r 8

Table 6.
Terms in Equation (8).

ρ S
ρ Fe 2 O 3 3.0 ( r 1 + r 4 ) M Fe 2 O 3
ρ Fe 3 O 4 ( 2 r 1 r 2 ) M Fe 3 O 4 + ( 2 r 4 r 5 ) M Fe 3 O 4
ρ FeO ( 3 r 2 r 3 ) M FeO + ( 3 r 5 r 6 ) M FeO
ρ Fe r 3 M Fe + r 6 M Fe
ρ C 1.0 ( r 7 + r 8 ) M C

Table 7.
RSM values under different ags.

ags/(m2·m−3)510152025
RMS/-0.135440.058980.043400.079140.08714

Table 8.
Distribution of iron-oxide oxygen removal across different pathways under different temperatures.

Item1173 K1273 K1373 K
Iron-oxide oxygen removed by H2 (%)624226
Iron-oxide oxygen removed by biochar (%)295672
Residual iron-oxide oxygen in BCB (%)922

Table 9.
Ratios of iron-oxide oxygen in different pathways under different atmospheres.

Item25 Vol.% H2-N250 Vol.% H2-N275 Vol.% H2-N2
Iron-oxide oxygen removed by H2 (%)374245
Iron-oxide oxygen removed by biochar (%)575653
Residual iron-oxide oxygen in BCB (%)622



Source link

Ting Zhang www.mdpi.com