Remote Sensing, Vol. 17, Pages 1843: Evolution of Vegetation Landscape Pattern Dynamics in Ejina Delta, Northwest China—Before and After Ecological Water Diversion
Remote Sensing doi: 10.3390/rs17111843
Authors:
Jingru Dong
Chaoyang Du
Jingjie Yu
As a typical desert oasis ecosystem in the arid region of Northwest China, the Ejina Delta plays a crucial role in regional ecological security through its vegetation dynamics and landscape pattern changes. Based on Landsat remote sensing images (1990–2020), runoff data, and vegetation landscape surveys, this study investigated the evolutionary patterns and driving mechanisms of vegetation degradation and restoration processes using Normalized Difference Vegetation Index (NDVI), landscape metrics, and Land Use Transition Matrix (LUTM) methods. The following key findings were obtained: (1) Since the implementation of the Ecological Water Diversion Project (EWDP) in the Heihe River Basin (HRB) in 2000, a significant recovery in vegetation coverage has been observed, with an NDVI growth rate of 0.0187/10 yr, which is five times faster than that in the pre-diversion period. The areas of arbor vegetation, shrubland, and grassland increased to 356.8, 689.5, and 2192.6 km2, respectively. However, there is a lag of about five years for the recovery of arbor and shrub compared to grass. (2) The implementation of EWDP has effectively reversed the trend of vegetation degradation, transforming the previously herb-dominated fragmented landscape into a more integrated pattern comprising multiple vegetation types. During the degradation period (1990–2005), the landscape exhibited a high degree of fragmentation, with an average number of patches (NP) reaching 45,875. In the subsequent recovery phase (2005–2010), fragmentation was significantly reduced, with the average NP dropping to 30,628. (3) Stronger vegetation growth and higher NDVI values were observed along the riparian zone, with the West River demonstrating greater restoration effectiveness compared to the East River. This study revealed that EWDP serves as the key factor driving vegetation recovery. To enhance oasis stability, future ecological management strategies should optimize spatiotemporal water allocation while considering differential vegetation responses.
Source link
Jingru Dong www.mdpi.com