Remote Sensing, Vol. 17, Pages 3298: Integrating Sentinel-1/2 Imagery and Climate Reanalysis for Monthly Bare Soil Mapping and Wind Erosion Modeling in Shandong Province, China
Remote Sensing doi: 10.3390/rs17193298
Authors:
Liu
Chen
Accurate identification of bare soil exposure and quantification of associated dust emissions are essential for understanding land degradation and air quality risks in intensively farmed regions. This study develops a monthly monitoring and modeling framework to quantify bare soil dynamics and wind erosion-induced particulate matter (PM) emissions across Shandong Province from 2017 to 2024. By integrating Sentinel-1/2 imagery, climate reanalysis, terrain and soil data, and employing a stacking ensemble classification model, we mapped bare soil areas at 10 m resolution with an overall accuracy of 93.1%. The results show distinct seasonal variation, with bare soil area peaking in winter and early spring, exceeding 25,000 km2 or 15% of the total area, which is far above the 6.4% estimated by land cover products. Simulations using the CLM5.0 dust module indicate that annual PM10 emissions from bare soil averaged (2.72 ± 1.09) × 105 tons across 2017–2024. Emissions were highest in March and lowest in summer months, with over 80% of the total emitted during winter and spring. A notable increase in emissions was observed after 2022, likely due to more frequent extreme wind events. Spatially, emissions were concentrated in coastal lowlands such as the Yellow River Delta and surrounding saline–alkali lands. Our approach explicitly advances traditional methods by generating monthly 10 m bare soil maps and linking satellite-derived dynamics with process-based dust emission modeling, providing a robust basis for targeted dust control and land management strategies.
Source link
Liu www.mdpi.com