Remote Sensing, Vol. 17, Pages 3475: A High-Resolution Sea Ice Concentration Retrieval from Ice-WaterNet Using Sentinel-1 SAR Imagery in Fram Strait, Arctic


Remote Sensing, Vol. 17, Pages 3475: A High-Resolution Sea Ice Concentration Retrieval from Ice-WaterNet Using Sentinel-1 SAR Imagery in Fram Strait, Arctic

Remote Sensing doi: 10.3390/rs17203475

Authors:
Tingting Zhu
Xiangbin Cui
Yu Zhang

High spatial resolution sea ice concentration (SIC) is crucial for global climate and marine activity. However, retrieving high spatial resolution SIC from passive microwave sensors is challenging due to the trade-off between spatial resolution and atmospheric contamination. Our study develops the Ice-WaterNet framework, a novel superpixel-based deep learning model that integrates Conditional Random Fields (CRF) with a dual-attention U-Net to enhance ice–water classification in Synthetic Aperture Radar (SAR) imagery. The Ice-WaterNet model has been extensively tested on 2735 Sentinel-1 dual-polarized SAR images from 2021 to 2023, covering both winter and summer seasons in the Fram Strait. To tackle the complex surface features during the melt season, wind-roughened open water, and varying ice floe sizes, a superpixel strategy is employed to efficiently reduce classification uncertainty. Uncertain superpixels identified by CRF are iteratively refined using the U-Net attention mechanism. Experimental results demonstrate that Ice-WaterNet achieves significant improvements in classification accuracy, outperforming CRF and U-Net by 3.375% in Intersection over Union (IoU) and 3.09% in F1-score during the melt season, and by 1.96 in IoU and 1.75 in F1-score during the freeze season. The derived high-resolution SIC products, updated every two days, were evaluated against Met Norway ice charts and compared with ASI from AMSR-2 and SSM/I, showing a substantial reduction in misclassification in marginal ice zones, particularly under melting conditions. These findings underscore the potential of Ice-WaterNet in supporting precise sea ice monitoring and climate change research.



Source link

Tingting Zhu www.mdpi.com