Remote Sensing, Vol. 18, Pages 319: Seasonal and Interannual Variation in Martian Gravity Waves at Different Altitudes from the Mars Climate Sounder


Remote Sensing, Vol. 18, Pages 319: Seasonal and Interannual Variation in Martian Gravity Waves at Different Altitudes from the Mars Climate Sounder

Remote Sensing doi: 10.3390/rs18020319

Authors:
Jing Li
Bo Chen
Tao Li
Zhaopeng Wu
Weiguo Zong

Gravity waves (GWs) are an important dynamic process in the planetary atmosphere. They are typically excited by convection, topography, or other sources from the lower atmosphere and propagate upwards. The GWs have a significant effect on the global atmospheric circulation on Mars. However, the lack of high-resolution data from previous observations has resulted in an insufficient understanding of GWs in the Martian atmosphere, particularly in terms of its global distribution and long-term evolution characteristics at different altitudes. Based on multiple years of Mars Climate Sounder (MCS) limb observations on board the Mars Reconnaissance Orbiter (MRO), we conducted a detailed study of the global distribution, seasonal and interannual variations in Martian atmospheric GWs with vertical wavelengths ranging from 9 to 15 km at three different altitude ranges, i.e., the low-altitude range of 200–20 Pa (Lp, ~10–30 km), the mid-altitude range of 20–2 Pa (Mp, ~30–50 km), and the high-altitude range of 2–0.2 Pa (Hp, ~50–70 km). The results indicate complex regional and north–south differences, as well as night–day variations, in the spatial distribution of GWs. Particularly, a three-wave structure of the GW activity is observed over mountainous regions in the mid-to-low latitudes of the Northern Hemisphere. The peak longitude range of this structure closely matches the mountainous terrain. In addition, our results reveal the presence of bands of GW aggregations in the mid- to-high latitudes of the Northern Hemisphere in the Mp and Hp layers, which may be caused by the instability of the polar jet. There are also obvious seasonal and interannual variations in GW activities, which are related to topography, polar jets, and large dust storms. The interannual variations in GWs imply that, in addition to the well-known large seasonal dust storms, complex interannual variations in atmospheric activity over the polar jets and in the complex topography at mid-to-low latitudes on Mars may also exist, which deserve further studies in the future.



Source link

Jing Li www.mdpi.com