Sensors, Vol. 25, Pages 5451: Intelligent Identification of Internal Leakage of Spring Full-Lift Safety Valve Based on Improved Convolutional Neural Network


Sensors, Vol. 25, Pages 5451: Intelligent Identification of Internal Leakage of Spring Full-Lift Safety Valve Based on Improved Convolutional Neural Network

Sensors doi: 10.3390/s25175451

Authors:
Shuxun Li
Kang Yuan
Jianjun Hou
Xiaoqi Meng

In modern industry, the spring full-lift safety valve is a key device for safe pressure relief of pressure-bearing systems. Its valve seat sealing surface is easily damaged after long-term use, causing internal leakage, resulting in safety hazards and economic losses. Therefore, it is of great significance to quickly and accurately diagnose its internal leakage state. Among the current methods for identifying fluid machinery faults, model-based methods have difficulties in parameter determination. Although the data-driven convolutional neural network (CNN) has great potential in the field of fault diagnosis, it has problems such as hyperparameter selection relying on experience, insufficient capture of time series and multi-scale features, and lack of research on valve internal leakage type identification. To this end, this study proposes a safety valve internal leakage identification method based on high-frequency FPGA data acquisition and improved CNN. The acoustic emission signals of different internal leakage states are obtained through the high-frequency FPGA acquisition system, and the two-dimensional time–frequency diagram is obtained by short-time Fourier transform and input into the improved model. The model uses the leaky rectified linear unit (LReLU) activation function to enhance nonlinear expression, introduces random pooling to prevent overfitting, optimizes hyperparameters with the help of horned lizard optimization algorithm (HLOA), and integrates the bidirectional gated recurrent unit (BiGRU) and selective kernel attention module (SKAM) to enhance temporal feature extraction and multi-scale feature capture. Experiments show that the average recognition accuracy of the model for the internal leakage state of the safety valve is 99.7%, which is better than the comparison model such as ResNet-18. This method provides an effective solution for the diagnosis of internal leakage of safety valves, and the signal conversion method can be extended to the fault diagnosis of other mechanical equipment. In the future, we will explore the fusion of lightweight networks and multi-source data to improve real-time and robustness.



Source link

Shuxun Li www.mdpi.com