Sensors, Vol. 25, Pages 5562: Detecting Diverse Seizure Types with Wrist-Worn Wearable Devices: A Comparison of Machine Learning Approaches


Sensors, Vol. 25, Pages 5562: Detecting Diverse Seizure Types with Wrist-Worn Wearable Devices: A Comparison of Machine Learning Approaches

Sensors doi: 10.3390/s25175562

Authors:
Louis Faust
Jie Cui
Camille Knepper
Mona Nasseri
Gregory Worrell
Benjamin H. Brinkmann

Objective: To evaluate the feasibility and effectiveness of wrist-worn wearable devices combined with machine learning (ML) approaches for detecting a diverse array of seizure types beyond generalized tonic–clonic (GTC), including focal, generalized, and subclinical seizures. Materials and Methods: Twenty-eight patients undergoing inpatient video-EEG monitoring at Mayo Clinic were concurrently monitored using Empatica E4 wrist-worn devices. These devices captured accelerometry, blood volume pulse, electrodermal activity, skin temperature, and heart rate. Seizures were annotated by neurologists. The data were preprocessed to experiment with various segment lengths (10 s and 60 s) and multiple feature sets. Three ML strategies, XGBoost, deep learning models (LSTM, CNN, Transformer), and ROCKET, were evaluated using leave-one-patient-out cross-validation. Performance was assessed using area under the receiver operating characteristic curve (AUROC), seizure-wise recall (SW-Recall), and false alarms per hour (FA/h). Results: Detection performance varied by seizure type and model. GTC seizures were detected most reliably (AUROC = 0.86, SW-Recall = 0.81, FA/h = 3.03). Hyperkinetic and tonic seizures showed high SW-Recall but also high FA/h. Subclinical and aware-dyscognitive seizures exhibited the lowest SW-Recall and highest FA/h. MultiROCKET and XGBoost performed best overall, though no single model was optimal for all seizure types. Longer segments (60 s) generally reduced FA/h. Feature set effectiveness varied, with multi-biosignal sets improving performance across seizure types. Conclusions: Wrist-worn wearables combined with ML can extend seizure detection beyond GTC seizures, though performance remains limited for non-motor types. Optimizing model selection, feature sets, and segment lengths, and minimizing false alarms, are key to clinical utility and real-world adoption.



Source link

Louis Faust www.mdpi.com