Sensors, Vol. 25, Pages 5991: An Antenna Array with Wide Flat-Top Beam and Low Sidelobes for Aerial Target Detection


Sensors, Vol. 25, Pages 5991: An Antenna Array with Wide Flat-Top Beam and Low Sidelobes for Aerial Target Detection

Sensors doi: 10.3390/s25195991

Authors:
Liangzhou Li
Yan Dong
Xiao Cai
Jingqian Tian

The misuse of drone technology poses significant risks to public and personal safety, emphasizing the need for accurate and efficient aerial target detection to prevent detection failures due to randomly distributed airborne targets and mitigate interference from undesired directions. Unlike conventional beam-synthesis techniques that often require either a large number of array elements or iterative numerical optimization, the proposed method analytically derives the excitation distribution by solving a newly formulated weighted-constraint problem, thereby fully accounting for mutual coupling between elements and ensuring both computational efficiency and design accuracy. In this communication, a 10 × 4 planar microstrip antenna array with a wide flat-top beam and low sidelobe is designed based on the extended method of maximum power transmission efficiency. The optimized distribution of excitations for the antenna array, which achieves a shaped beam with uniform gain over the desired angular range while suppressing sidelobe levels (SLLs) outside the shaped region, is derived by analytically solving a newly formulated weighted constraint problem. To reduce the number of antenna elements and enhance radiation characteristics, the inter-element spacings in the E-plane and H-plane are set to 0.55 λ0 and 0.75 λ0, where λ0 is the free-space wavelength at 3.5 GHz. Measurement results indicate that the flat-top beam in the E-plane has a wide half-power beamwidth (HPBW) of 51.2° and a low SLL of −30.1 dB, while the beam in the H-plane has a narrow HPBW of 20.1° and a low SLL of −30.5 dB, thereby demonstrating its capability in aerial target detection and airborne tracking applications.



Source link

Liangzhou Li www.mdpi.com