Sensors, Vol. 25, Pages 6440: Impact of Wind on Rainfall Measurements Obtained from the OTT Parsivel2 Disdrometer
Sensors doi: 10.3390/s25206440
Authors:
Enrico Chinchella
Arianna Cauteruccio
Luca G. Lanza
The impact of wind on precipitation measurements from the OTT Parsivel2 optical transmission disdrometer is quantified using computational fluid dynamics simulations. The numerical velocity field around the instrument body and above the instrument sensing area (the laser beam) shows significant disturbance that depends heavily on the wind direction. By computing the trajectories of raindrops approaching the instrument, the wind-induced bias is quantified for a wide range of environmental conditions. Adjustments are derived in terms of site-independent catch ratios, which can be used to correct measurements in post-processing. The impact on two integral rainfall variables, the rainfall intensity and radar reflectivity, is calculated in terms of collection and radar retrieval efficiency assuming a sample drop size distribution. For rainfall intensity measurements, the OTT Parsivel2 shows significant bias, even much higher than the wind-induced bias typical of catching-type rain gauges. Large underestimation is shown for wind parallel to the laser beam, while limited bias occurs for wind perpendicular to it. The intermediate case, with wind at 45°, presents non negligible overestimation. Proper alignment of the instrument with the laser beam perpendicular to the prevailing wind direction at the installation site and the use of windshields may significantly reduce the overall wind-induced bias.
Source link
Enrico Chinchella www.mdpi.com