Sensors, Vol. 25, Pages 6677: Efficient and Privacy-Preserving Power Distribution Analytics Based on IoT
Sensors doi: 10.3390/s25216677
Authors:
Ruichen Xu
Jiayi Xu
Xuhao Ren
Haotian Deng
The increasing global demand for electricity has heightened the need for stable and reliable power distribution systems. Disruptions in power distribution can cause substantial economic losses and societal impact, underscoring the importance of accurate, timely, and scalable monitoring. The integration of Internet of Things (IoT) technologies into smart grids offers promising capabilities for real-time data collection and intelligent control. However, the application of IoT has created new challenges such as high communication overhead and insufficient user privacy protection due to the continuous exchange of sensitive data. In this paper, we propose a method for power distribution analytics in smart grids based on IoT called PSDA. PSDA collects real-time power usage data from IoT sensor nodes distributed across different grid regions. The collected data is spatially organized using Hilbert curves to preserve locality and enable efficient encoding for subsequent processing. Meanwhile, we adopt a dual-server architecture and distributed point functions (DPF) to ensure efficient data transmission and privacy protection for power usage data. Experimental results indicate that the proposed approach is capable of accurately analyzing power distribution, thereby facilitating prompt responses within smart grid management systems. Compared with traditional methods, our scheme offers significant advantages in privacy protection and real-time processing, providing an innovative IoT-integrated solution for the secure and efficient operation of smart grids.
Source link
Ruichen Xu www.mdpi.com
