Sensors, Vol. 26, Pages 1362: Degradation-Aware Dynamic Kernel Generation Network for Hyperspectral Super-Resolution


Sensors, Vol. 26, Pages 1362: Degradation-Aware Dynamic Kernel Generation Network for Hyperspectral Super-Resolution

Sensors doi: 10.3390/s26041362

Authors:
Huadong Liu
Haifeng Liang
Qian Wang

Addressing the problems of the difficulty in reconstructing high-resolution hyperspectral images caused by dynamic degradation characteristics, the poor adaptability of traditional static degradation models, and the oversimplified noise modeling, this paper proposes a degradation-aware dynamic Fourier network (DADFN) for hyperspectral super-resolution. This method employs a dual-channel split module to decouple and encode spectral and spatial degradation information, realizes the independent mapping of spectral and spatial features via a multi-layer perceptron module, and integrates a spectral–spatial dynamic cross-attention fusion module to generate 3D dynamic blur kernels tailored to different bands and spatial positions. The proposed method designs a multi-scale spectral–spatial collaborative constraint (MSSCC) loss function to ensure the coordinated optimization of modeling rationality, spectral continuity, and spatial detail fidelity. Experiments on the CAVE and Harvard benchmark datasets demonstrate that the DADFN algorithm outperforms the baseline methods in all evaluation metrics, which proves the proposed method’s strong robustness in real-world complex degradation scenarios. This method provides a novel solution balancing physical interpretability and performance superiority for hyperspectral image super-resolution tasks and holds significant value for advancing its applications in remote sensing monitoring, precision agriculture, and other related fields.



Source link

Huadong Liu www.mdpi.com