Sensors, Vol. 26, Pages 300: PBZGNet: A Novel Defect Detection Network for Substation Equipment Based on Gradual Parallel Branch Architecture
Sensors doi: 10.3390/s26010300
Authors:
Mintao Hu
Yang Zhuang
Jiahao Wang
Yaoyi Hu
Desheng Sun
Dawei Xu
Yongjie Zhai
As power systems expand and grow smarter, the safe and steady operation of substation equipment has become a prerequisite for grid reliability. In cluttered substation scenes, however, existing deep learning detectors still struggle with small targets, multi-scale feature fusion, and precise localization. To overcome these limitations, we introduce PBZGNet, a defect-detection network that couples a gradual parallel-branch backbone, a zoom-fusion neck, and a global channel-recalibration module. First, BiCoreNet is embedded in the feature extractor: dual-core parallel paths, reversible residual links, and channel recalibration cooperate to mine fault-sensitive cues. Second, cross-scale ZFusion and Concat-CBFuse are dynamically merged so that no scale loses information; a hierarchical composite feature pyramid is then formed, strengthening the representation of both complex objects and tiny flaws. Third, an attention-guided decoupled detection head (ADHead) refines responses to obscured and minute defect patterns. Finally, within the Generalized Focal Loss framework, a quality rating scheme suppresses background interference while distribution regression sharpens the localization of small targets. Across all scales, PBZGNet clearly outperforms YOLOv11. Its lightweight variant, PBZGNet-n, attains 83.9% mAP@50 with only 2.91 M parameters and 7.7 GFLOPs—9.3% above YOLOv11-n. The full PBZGNet surpasses the current best substation model, YOLO-SD, by 7.3% mAP@50, setting a new state of the art (SOTA).
Source link
Mintao Hu www.mdpi.com
