Sensors, Vol. 26, Pages 458: FESW-UNet: A Dual-Domain Attention Network for Sorghum Aphid Segmentation
Sensors doi: 10.3390/s26020458
Authors:
Caijian Hua
Fangjun Ren
Current management strategies for sorghum aphids heavily rely on indiscriminate chemical application, leading to severe environmental consequences and impacting food safety. While precision spraying offers a viable remediation for pesticide overuse, its effectiveness depends on accurately locating and classifying pests. To address the critical challenge of segmenting small, swarming aphids in complex field environments, we propose FESW-UNet, a dual-domain attention network that integrates Fourier-enhanced attention, spatial attention, and wavelet-based downsampling into a UNet backbone. We introduce an efficient multi-scale attention (EMA) module between the encoder and decoder to enhance global context perception, enabling the model to capture more accurate relationships between global and local features in the field. In the feature extraction stage, we embed a simple attention module (SimAM) to target key infestation regions while suppressing background noise, thereby enhancing pixel-level discrimination. Furthermore, we replace conventional downsampling with Haar wavelet downsampling (HWD) to reduce resolution while preserving structural edge details. Finally, a Fourier-enhanced attention module (FEAM) is added to the skip-connection layers. By using complex-valued weights to regulate frequency-domain features, FEAM effectively fuses global low-frequency structures with local high-frequency details, thereby enhancing feature representation diversity. Experiments on the Aphid Cluster Segmentation dataset demonstrate that FESW-UNet outperforms other models, achieving an mIoU of 68.76%, mPA of 78.19%, and mF1 of 79.01%. The model also demonstrated strong adaptability on the AphidSeg-Sorghum dataset, achieving an mIoU of 81.22%, mPA of 87.97%, and mF1 of 88.60%. The proposed method offers an efficient and feasible technical solution for monitoring and controlling sorghum aphids through image segmentation, demonstrating broad application potential.
Source link
Caijian Hua www.mdpi.com

