Surfaces, Vol. 9, Pages 20: Structural Characterisation of Disordered Porous Materials Using Gas Sorption and Complementary Techniques
Surfaces doi: 10.3390/surfaces9010020
Authors:
Sean P. Rigby
Suleiman Mousa
While advanced imaging techniques and ordered porous materials like MOFs have gained prominence, gas sorption remains the indispensable tool for characterizing the multiscale heterogeneity of industrially important disordered solids, such as catalysts and shales. This review examines recent developments in gas sorption methodologies specifically tailored for rigid, disordered porous media. We discuss experimental advances, including the choice of adsorbate and the utility of the overcondensation method for probing macroporosity and ensuring saturation. Furthermore, we critically evaluate theoretical approaches for determining pore size distributions (PSDs), contrasting classical methods with Density Functional Theory (DFT) and Grand Canonical Monte Carlo (GCMC) simulations. Special emphasis is placed on the impact of pore-to-pore cooperative effects, such as advanced condensation, cavitation, and pore-blocking, on the interpretation of sorption isotherms. We highlight how complementary techniques, including integrated mercury porosimetry, NMR, and computerized X-ray tomography (CXT), are essential for deconvolving these complex network effects and validating void space descriptors. We conclude that, while “brute force” molecular simulations on image-based reconstructions are progressing, “minimalist” pore network models, which incorporate cooperative mechanisms, currently offer the most empirically adequate approach. Ultimately, gas sorption remains unique in its ability to statistically characterize void spaces from Angstroms to millimeters in a single experiment.
Source link
Sean P. Rigby www.mdpi.com

