Sustainability, Vol. 17, Pages 7635: Spatial Evolution of Green Total Factor Carbon Productivity in the Transportation Sector and Its Energy-Driven Mechanisms


Sustainability, Vol. 17, Pages 7635: Spatial Evolution of Green Total Factor Carbon Productivity in the Transportation Sector and Its Energy-Driven Mechanisms

Sustainability doi: 10.3390/su17177635

Authors:
Yanming Sun
Jiale Liu
Qingli Li

Achieving carbon reduction is essential in advancing China’s dual carbon goals and promoting a green transformation in the transportation sector. Changes in energy structure and intensity constitute key drivers for sustainable and low-carbon development in this field. To explore the spatial spillover effects of the energy structure and intensity on the green transition of transportation, this study constructs a panel dataset of 30 Chinese provinces from 2007 to 2020. It employs a super-efficiency SBM model, non-parametric kernel density estimation, and a spatial Markov chain to verify and quantify the spatial spillover effects of green total factor productivity (GTFP) in the transportation sector. A dynamic spatial Durbin model is then used for empirical estimation. The main findings are as follows: (1) GTFP in China’s transportation sector exhibits a distinct spatial pattern of “high in the east, low in the west”, with an evident path dependence and structural divergence in its evolution; (2) GTFP displays spatial clustering characteristics, with “high–high” and “low–low” agglomeration patterns, and the spatial Markov chain confirms that the GTFP levels of neighboring regions significantly influence local transitions; (3) the optimization of the energy structure significantly promotes both local and neighboring GTFP in the short term, although the effect weakens over the long term; (4) a reduction in energy intensity also exerts a significant positive effect on GTFP, but with clear regional heterogeneity: the effects are more pronounced in the eastern and central regions, whereas the western and northeastern regions face risks of negative spillovers. Drawing on the empirical findings, several policy recommendations are proposed, including implementing regionally differentiated strategies for energy structure adjustment, enhancing transportation’s energy efficiency, strengthening cross-regional policy coordination, and establishing green development incentive mechanisms, with the aim of supporting the green and low-carbon transformation of the transportation sector both theoretically and practically.



Source link

Yanming Sun www.mdpi.com