Sustainability, Vol. 18, Pages 1656: Microbiological Air Quality in Windowless Exhibition Spaces with Centralized Air-Conditioning and Air Recirculation—Pilot Study
Sustainability doi: 10.3390/su18031656
Authors:
Sylwia Szczęśniak
Juliusz Walaszczyk
Agnieszka Trusz
Katarzyna Piekarska
Microbiological contamination in public buildings is closely linked to human presence, such as airborne bacteria, fungi, and particulate matter, which strongly influence indoor air quality (IAQ). This study examined the distribution of microorganisms in a museum building in relation to time of day, air-handling unit (AHU) type, and ventilation operating mode. Exhibition rooms without natural light relied entirely on a central heating, ventilation and air conditioning (HVAC) system. Microbiological contamination was assessed using Koch’s passive sedimentation method over a 24 h cycle for two AHUs (I and III) and selected rooms, while CO2 levels were monitored as indicators of occupancy and ventilation demand in line with EN 16798-1:2019 and ASHRAE 62.1-2022. Although the demand-controlled ventilation system increased the outdoor air fraction from 40% to 70–100% during peak visitor density, localized increases in microbial contamination occurred. AHU I showed higher loads of Staphylococcus sp. and fungi, while AHU III exhibited pronounced fungal peaks influenced by elevated humidity from an open water reservoir. Psychrophilic bacteria reached 140–230 CFU·m−3, mesophilic bacteria 230–320 CFU·m−3, and fungi up to 740 CFU·m−3. Most CFU values remained below commonly referenced upper limits (<1000 CFU·m−3), but several peaks exceeded lower recommended thresholds, indicating a need for improvements. Enhanced filtration, humidity control, increased airflow during high occupancy, and reducing moisture sources in AHUs may mitigate microbial growth and improve IAQ in public buildings.
Source link
Sylwia Szczęśniak www.mdpi.com
