Sustainability, Vol. 18, Pages 733: The Inverted U-Shaped Relationship Between Digital Literacy and Household Carbon Emissions: Empirical Evidence from China’s CFPS Microdata
Sustainability doi: 10.3390/su18020733
Authors:
Weiping Wu
Liangyu Ye
Shenyuan Zhang
In the context of China’s dual-carbon agenda and the Digital China initiative, elucidating the role of digital literacy in shaping consumption-based household carbon emissions (HCE) is essential for advancing low-carbon urban living and supporting a broader green transition. Existing research has rarely examined, at the individual level, how digital capability shapes household consumption decisions and the structure of carbon emissions. Accordingly, this study draws on matched household-individual microdata from the China Family Panel Studies (CFPS). We employ a two-way fixed effects model, kernel density analysis, and qualitative comparative analysis. We test the nonlinear effect of digital literacy on household consumption-related carbon emissions and examine its heterogeneity. We also examined the mediating role of perceived environmental pressure, social trust and income level. The research results show that: (1) The net impact of digital literacy on carbon emissions related to household consumption shows an inverted U-shaped curve, rising first and then falling. When digital literacy is low, it mainly increases emissions by expanding consumption channels, reducing transaction costs and improving convenience. Once digital literacy exceeds a certain threshold, the mechanism will gradually turn to optimize the consumption structure, so as to support the low-carbon transformation of individuals. (2) The impact of digital literacy on HCE is structurally different in different types of consumption. In terms of transportation and communication expenditure, the emission reduction effect is the most significant, and with the improvement in digital literacy, this effect will become more and more obvious. For housing-related consumption, the turning point appeared the earliest. With the improvement in digital literacy, its effect will enter the emission reduction stage faster. (3) Digital literacy can reduce carbon emissions related to household consumption by enhancing residents’ perception of environmental pressure and strengthening social trust. However, it may also increase emissions by increasing residents’ incomes, because it will expand the scale of consumption, which will lead to an increase in carbon emissions related to household consumption. (4) The heterogeneity analysis shows that as digital literacy improves, carbon emissions increase more strongly among rural residents, people with low human capital, low-income households, and women. However, the turning-point threshold for emission reduction is relatively lower for women and rural residents. (5) Low-carbon transitions in household consumption are shaped by dynamic interactions among multiple factors, and multiple pathways can coexist. Digital literacy can work with environmental responsibility to endogenously promote low-carbon consumption behavior. It can also, under well-developed infrastructure, empower households and amplify the emission-reduction effects of technology.
Source link
Weiping Wu www.mdpi.com

