Systems, Vol. 13, Pages 463: SecFedDNN: A Secure Federated Deep Learning Framework for Edge–Cloud Environments


Systems, Vol. 13, Pages 463: SecFedDNN: A Secure Federated Deep Learning Framework for Edge–Cloud Environments

Systems doi: 10.3390/systems13060463

Authors:
Roba H. Alamir
Ayman Noor
Hanan Almukhalfi
Reham Almukhlifi
Talal H. Noor

Cyber threats that target Internet of Things (IoT) and edge computing environments are growing in scale and complexity, which necessitates the development of security solutions that are both robust and scalable while also protecting privacy. Edge scenarios require new intrusion detection solutions because traditional centralized intrusion detection systems (IDSs) lack in the protection of data privacy, create excessive communication overhead, and show limited contextual adaptation capabilities. This paper introduces the SecFedDNN framework, which combines federated deep learning (FDL) capabilities to protect edge–cloud environments from cyberattacks such as Distributed Denial of Service (DDoS), Denial of Service (DoS), and injection attacks. SecFedDNN performs edge-level pre-aggregation filtering through Layer-Adaptive Sparsified Model Aggregation (LASA) for anomaly detection while supporting balanced multi-class evaluation across federated clients. A Deep Neural Network (DNN) forms the main model that trains concurrently with multiple clients through the Federated Averaging (FedAvg) protocol while keeping raw data local. We utilized Google Cloud Platform (GCP) along with Google Colaboratory (Colab) to create five federated clients for simulating attacks on the TON_IoT dataset, which we balanced across selected attack types. Initial tests showed DNN outperformed Long Short-Term Memory (LSTM) and SimpleNN in centralized environments by providing higher accuracy at lower computational costs. Following federated training, the SecFedDNN framework achieved an average accuracy and precision above 84% and recall and F1-score above 82% across all clients with suitable response times for real-time deployment. The study proves that FDL can strengthen intrusion detection across distributed edge networks without compromising data privacy guarantees.



Source link

Roba H. Alamir www.mdpi.com