Theoretical and Applied Ergonomics, Vol. 1, Pages 8: The Effects of Vibrotactile Stimulation of the Upper Extremity on Sensation and Perception: A Study for Enhanced Ergonomic Design
Theoretical and Applied Ergonomics doi: 10.3390/tae1020008
Authors:
Abeer Abdel Khaleq
Yash More
Brody Skaufel
Mazen Al Borno
Vibrotactile stimulation has applications in a variety of fields, including medicine, virtual reality, and human–computer interaction. Eccentric Rotating Mass (ERM) vibrating motors are widely used in wearable haptic devices owing to their small size, low cost, and low-energy features. User experience with vibrotactile stimulation is an important factor in ergonomic design for these applications. The effects of ERM motor vibrations on upper-extremity sensation and perception, which are important in the design of better wearable haptic devices, have not been thoroughly studied previously. Our study focuses on the relationship between user sensation and perception and on different vibration parameters, including frequency, location, and number of motors. We conducted experiments with vibrotactile stimulation on 15 healthy participants while the subjects were both at rest and in motion to capture different use cases of haptic devices. Eight motors were placed on a consistent set of muscles in the subjects’ upper extremities, and one motor was placed on their index fingers. We found a significant correlation between voltage and sensation intensity (r = 0.39). This finding is important in the design and safety of customized haptic devices. However, we did not find a significant aggregate-level correlation with the perceived pleasantness of the simulation. The sensation intensity varied based on the location of the vibration on the upper extremities (with the lowest intensities on the triceps brachii and brachialis) and slightly decreased (5.9 ± 2.9%) when the participants performed reaching movements. When a single motor was vibrating, the participants’ accuracy in identifying the motor without visual feedback increased as the voltage increased, reaching up to 81.4 ± 14.2%. When we stimulated three muscles simultaneously, we found that most participants were able to identify only two out of three vibrating motors (41.7 ± 32.3%). Our findings can help identify stimulation parameters for the ergonomic design of haptic devices.
Source link
Abeer Abdel Khaleq www.mdpi.com