Tomography, Vol. 11, Pages 96: Leveraging Multimodal Foundation Models in Biliary Tract Cancer Research
Tomography doi: 10.3390/tomography11090096
Authors:
Yashbir Singh
Jesper B. Andersen
Quincy A. Hathaway
Diana V. Vera-Garcia
Varekan Keishing
Sudhakar K. Venkatesh
Sara Salehi
Davide Povero
Michael B. Wallace
Gregory J. Gores
Yujia Wei
Natally Horvat
Bradley J. Erickson
Emilio Quaia
This review explores how multimodal foundation models (MFMs) are transforming biliary tract cancer (BTC) research. BTCs are aggressive malignancies with poor prognosis, presenting unique challenges due to difficult diagnostic methods, molecular complexity, and rarity. Importantly, intrahepatic cholangiocarcinoma (iCCA), perihilar cholangiocarcinoma (pCCA), and distal bile duct cholangiocarcinoma (dCCA) represent fundamentally distinct clinical entities, with iCCA presenting as mass-forming lesions amenable to biopsy and targeted therapies, while pCCA manifests as infiltrative bile duct lesions with challenging diagnosis and primarily palliative management approaches. MFMs offer potential to advance research by integrating radiological images, histopathology, multi-omics profiles, and clinical data into unified computational frameworks, with applications tailored to these distinct BTC subtypes. Key applications include enhanced biomarker discovery that identifies previously unrecognizable cross-modal patterns, potential for improving currently limited diagnostic accuracy—though validation in BTC-specific cohorts remains essential—accelerated drug repurposing, and advanced patient stratification for personalized treatment. Despite promising results, challenges such as data scarcity, high computational demands, and clinical workflow integration remain to be addressed. Future research should focus on standardized data protocols, architectural innovations, and prospective validation studies. The integration of artificial intelligence (AI)-based methodologies offers new solutions for these historically challenging malignancies. However, current evidence for BTC-specific applications remains largely theoretical, with most studies limited to proof-of-concept designs or related cancer types. Comprehensive clinical validation studies and prospective trials demonstrating patient benefit are essential prerequisites for clinical implementation. The timeline for evidence-based clinical adoption likely extends 7–10 years, contingent on successful completion of validation studies addressing current evidence gaps.
Source link
Yashbir Singh www.mdpi.com