Toxics, Vol. 13, Pages 586: MWB_Analyzer: An Automated Embedded System for Real-Time Quantitative Analysis of Morphine Withdrawal Behaviors in Rodents
Toxics doi: 10.3390/toxics13070586
Authors:
Moran Zhang
Qianqian Li
Shunhang Li
Binxian Sun
Zhuli Wu
Jinxuan Liu
Xingchao Geng
Fangyi Chen
Background/Objectives: Substance use disorders, particularly opioid addiction, continue to pose a major global health and toxicological challenge. Morphine dependence represents a significant problem in both clinical practice and preclinical research, particularly in modeling the pharmacodynamics of withdrawal. Rodent models remain indispensable for investigating the neurotoxicological effects of chronic opioid exposure and withdrawal. However, conventional behavioral assessments rely on manual observation, limiting objectivity, reproducibility, and scalability—critical constraints in modern drug toxicity evaluation. This study introduces MWB_Analyzer, an automated and high-throughput system designed to quantitatively and objectively assess morphine withdrawal behaviors in rats. The goal is to enhance toxicological assessments of CNS-active substances through robust, scalable behavioral phenotyping. Methods: MWB_Analyzer integrates optimized multi-angle video capture, real-time signal processing, and machine learning-driven behavioral classification. An improved YOLO-based architecture was developed for the accurate detection and categorization of withdrawal-associated behaviors in video frames, while a parallel pipeline processed audio signals. The system incorporates behavior-specific duration thresholds to isolate pharmacologically and toxicologically relevant behavioral events. Experimental animals were assigned to high-dose, low-dose, and control groups. Withdrawal was induced and monitored under standardized toxicological protocols. Results: MWB_Analyzer achieved over 95% reduction in redundant frame processing, markedly improving computational efficiency. It demonstrated high classification accuracy: >94% for video-based behaviors (93% on edge devices) and >92% for audio-based events. The use of behavioral thresholds enabled sensitive differentiation between dosage groups, revealing clear dose–response relationships and supporting its application in neuropharmacological and neurotoxicological profiling. Conclusions: MWB_Analyzer offers a robust, reproducible, and objective platform for the automated evaluation of opioid withdrawal syndromes in rodent models. It enhances throughput, precision, and standardization in addiction research. Importantly, this tool supports toxicological investigations of CNS drug effects, preclinical pharmacokinetic and pharmacodynamic evaluations, drug safety profiling, and regulatory assessment of novel opioid and CNS-active therapeutics.
Source link
Moran Zhang www.mdpi.com