Water, Vol. 17, Pages 2942: Long-Term Runoff Prediction Using Large-Scale Climatic Indices and Machine Learning Model in Wudongde and Three Gorges Reservoirs
Water doi: 10.3390/w17202942
Authors:
Feng Ma
Xiaoshan Sun
Zihang Han
Reliable long-term runoff prediction for Wudongde and Three Gorges reservoirs, two major reservoirs in the upper Yangtze River basin, is crucial for optimal operation of cascade reservoirs and hydropower generation planning. This study develops a data-driven model that integrates large-scale climate factors with a Gated Recurrent Unit (GRU) neural network to enhance runoff forecasting at lead times of 7–18 months. Key climate predictors were systematically selected using correlation analysis and stepwise regression before being fed into the GRU model. Evaluation results demonstrate that the proposed model can skillfully predict the variability and magnitude of reservoir inflow. For Wudongde Reservoir, the model achieved a mean correlation coefficient (CC) of 0.71 and Kling–Gupta Efficiency (KGE) of 0.57 during the training period, and values of 0.69 and 0.53 respectively during the testing period. For Three Gorges Reservoir, the CC was 0.67 (training) and 0.66 (testing), and the KGE was 0.52 and 0.49 respectively. The model exhibited robust forecasting capabilities across a range of lead times but showed distinct seasonal variations, with superior performance in summer and winter compared to transitional months (April and October). This framework provides a valuable tool for long-term runoff forecasting by effectively linking large-scale climate signals to local hydrological responses.
Source link
Feng Ma www.mdpi.com